Skip to main content
Log in

Utilization of Raptor Codes for OFDM-System Performance Enhancing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the utilization of Raptor code for performance enhancement of Orthogonal Frequency Division Multiplexing (OFDM) systems. Unlike classical channel coding techniques which have fixed code rates, Raptor code is a rateless code. Raptor code has proved to have a wonderful performance over a class of wireless channels. Simulation experiments have been carried out to investigate the performance of Raptor code with OFDM. Different modulation schemes have been used in the simulation experiments such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), and Quadrature Amplitude Modulation (QAM). The Bit Error Rate (BER) has been used as the evaluation metric for the proposed Raptor-OFDM system. Simulation results reveal a good performance of the proposed system. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Patil, C. S., Karhe, R. R., & Aher, M. A. (2012). Development of mobile technology: A survey. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 1(5), 374–379.

    Google Scholar 

  2. Singh, A. (2015). A review of different generations of mobile technology. International Journal of Advanced Research in Computer Engineering and Technology (IJARCET), 4(8), 3404–3408.

    Google Scholar 

  3. Patil1, C. S., Karhe, R. R., Aher, M. A. (2012). Review on generations in mobile cellular technology. International Journal of Emerging Technology and Advanced Engineering, 2(10). www.ijetae.com. (ISSN 2250-2459, October 2012).

  4. Jakes, W. C. (1974). Microwave mobile communications (3rd ed.). New York: Wiley.

    Google Scholar 

  5. Shannon, C. E. (1949). A mathematical theory of communication. Urbana, IL: University of Illinois Press (reprinted 1998).

  6. Rappport, T. S. (2002). Wireless communications: Principles and practice (2nd ed.). Singapore: Pearson Education Inc.

    Google Scholar 

  7. Proakis, J. G. (2001). Digital communications (4th ed.). Mc-Graw-Hill: International Editions.

    MATH  Google Scholar 

  8. Nakagami, M. (1960). The m-distribution—A general formula of the intensity distribution of rapid fading. Statistical methods in radio wave propagation (pp. 3–36). Oxford, UK: Pergamon Press.

    Chapter  Google Scholar 

  9. Abd El-Hameed, M. E., El-Bendary, M. A. M., Bekhiet, I. O., & Abd El-Kader, H. M. (2016). An efficient secured turbo codes for long term evolution system enhancement. International Journal of Networks and Communications, 6(3), 49–56.

    Google Scholar 

  10. Andrews, J. G., Ghosh, A., & Mohamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking. Upper Saddle River: Prentice Hall.

    Google Scholar 

  11. Lathi, B. P. (2010). Modern digital and analog communications system (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  12. Schulze, H., & Luders, C. (2005). Theory and application of OFDM and CDMA wideband wireless communication. New York: Wiley.

    Book  Google Scholar 

  13. Marchetti, N., Rahman, M. I., Kumar, S., & Prasad, R. (2009). OFDM: Principles and challenges. In V. Tarokh (Ed.), New directions in wireless communications research  (pp. 29–62). Springer.

  14. Nee, R. V., & Prasad, R. (2004). OFDM for wireless communications systems. Norwood: Artech House.

    Google Scholar 

  15. Harada, H., & Prasad, R. (2002) Simulation and software radio for mobile communications. Artech House, Universal Personal Communications library.

  16. Nee, R. V., & Prasad, R. (2004). OFDM for wireless multimedia communications. Norwood: Artech House Publishers.

    Google Scholar 

  17. Gallager, R. G. (1963). Low density parity check codes. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  18. Mackay, D. J. C. (2005). Fountain codes. IEE Proceedings-Communications, 152(6), 1062–1068.

  19. Celebi, S. (2003). Inter block interference (IBI) minimizing time-domain equalizer (TEQ) for OFDM. IEEE Signal Processing Letters, 10(8), 232–234.

    Article  Google Scholar 

  20. Clark, M. V. (1998). Adaptive frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1385–1395.

    Article  Google Scholar 

  21. Luby, M. (2002). LT-codes. In Proceedings of the 43rd annual IEEE symposium on the foundations of computer science, pp. 271–280.

  22. Soliman, N. F., Hassan, E. S., Shaalan, A. H. A., Fouad, M. M., El-Khamy, S. E., Albagory,  Y., et al. (2015). Efficient image communication in PAPR distortion cases. International Journal of Wireless Personal Communications, 83(4), 2773–2834.

    Article  Google Scholar 

  23. Rahman, M., Dash, S., Fitzek, F. (2005). OFDM based WLAN systems, Technical Report, Aalborg University, Denmark.

  24. Luby, M., Watson, M., Gasiba, T., Stockhammer, T., & Xu, W. (2006). Raptor codes for reliable download delivery in wireless broadcast systems. In Proceedings of IEEE CCNC.

  25. Singh, K., & Khurana, J. (2014). Performance analysis of wireless OFDM system using raptor codes with different modulation. International Journal of Engineering Science and Innovative Technology (IJESIT), 3(4), 86–91.

    Google Scholar 

  26. Pandya, A. U., Trapasiya, S. D., & Chinnam, S. S. (2013). Performance analysis of AL-FEC raptor code over 3GPP eMBMS network. International Journal of Research in Engineering and Technology, 02(04), 601–608.

    Google Scholar 

  27. Ellis,  J. D., & Pursley, M. B. (2017). Adaptive transmission protocols for fountain-coded multicast in packet radio networks. IEEE Transactions on Communications, 65(4), 1786–1796.

    Article  Google Scholar 

  28. Sivasubramanian,  B., & Leib, H. (2008). Fixed-rate raptor codes over rician fading channels. IEEE Transactions on Vehicular Technology, 57(6), 3905–3911.

    Article  Google Scholar 

  29. Yao, W., Chen, L., Li, H., & Xu, H. (2008). Research on fountain codes in deep space communication. Congress on Image and Signal Processing, 2(27–30), 219–224.

    Article  Google Scholar 

  30. Reed, I., & Solomon, G. (1960). Polynomial codes over certain finite fields. SIAM Journal of Applied Mathematics, 8, 300–304.

    Article  MathSciNet  MATH  Google Scholar 

  31. Wicker, S., & Bhargava, V. (Eds.). (1994). Reed-solomon codes and their applications. Piscataway, NJ: IEEE Press.

    MATH  Google Scholar 

  32. van Lint, J. (1992). Introduction to coding theory (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  33. MacKay, D. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  34. Shokrollahi, A., & Luby, M. (2009). Raptor codes. Foundations and Trends® in Communications and Information Theory, 6(3–4), 213–322.

    MATH  Google Scholar 

  35. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions Information Theory, 52(6), 2551–2567.

    Article  MathSciNet  MATH  Google Scholar 

  36. Shokrollahi, A. (2009). Theory and applications of raptor codes. In Proceedings of MathKnow, pp. 59–89.

  37. Shokrollahi, A., Lassen, S., & Karp, R. (2005). Systems and processes for decoding chain reaction codes through inactivation. U.S. Patent number 6,856,263.

  38. Shokrollahi, A., Lassen, S., & Luby, M. (2006). Multi-stage code generator and decoder for communication systems. U.S. Patent 7,068,729.

  39. Yao, Q., Tang, C., & Wu, S. (2011). Frame fountain: Coding and decoding MAC frames. School of computing, University of Southern Mississippi.

  40. Luby, M. (1998). Tornado codes: Practical erasures codes based on random irregular graphes. International Computer Science Institute and Digital Fountain.

  41. Khisti, A. (2003). Tornado codes and Luby transform codes. SemanticScholar Org. web-site (pp. 1–12). 22 Oct 2003.

  42. El-Gohary, N. M., El-Bendary, M. A. M., Abd El-Samie, F. E., Fouad, M. M. (2016). Performance evaluation of various erasures coding techniques in digital communication. Journal of Wireless Networking and Communications, Scientific & Academic Publishing, 6(1), 10–20. 

    Google Scholar 

  43. Neckebroek, J., Moeneclaey, M., Magli, E. (2010). Comparison of Reed-Solomon and Raptor codes for the protection of video on-demand on the erasure channel. In 2010 international symposium on information theory and its applications (ISITA). doi:10.1109/ISITA.2010.5649587.

  44. El-Bendary, M. A. M. (2017). FEC merged with double security approach based on encrypted image steganography for different purpose in the presence of noise and different attacks. Multimedia Tools and Applications. doi:10.1007/s11042-016-4177-5.

    Google Scholar 

  45. Eldokany, I., El-Rabaie, E. S. M., Elhalafawy, S. M., Eldin, M. A. Z., Shahieen, M. H., Soliman, N. F., et al. (2015). Efficient transmission of encrypted images with OFDM in the presence of carrier frequency offset. Wireless Personal Communications, 84(1), 475–521.

    Article  Google Scholar 

  46. Soliman, N. F., Albagory, Y., Elbendary, M. A. M., Al-Hanafy, W., El-Rabaie, E. S. M., Alshebeili, S. A., et al. (2014). Chaotic interleaving for robust image transmission with LDPC coded OFDM. Wireless Personal Communications, 79(3), 2141–2154.

    Article  Google Scholar 

  47. Kasban, H., & El-Bendary, M. A. M. M. K. (2016). Performance improvement of digital image transmission over mobile WiMAX networks. Wireless Personal Communications. doi:10.1007/s11277-016-3671-4.

    Google Scholar 

  48. Kasban, H., El-Tokhy, M. A. R., & El-Bendary, M. A. M. (2014). Interleaved reed-solomon codes with code rate switching over wireless communications channels. International Journal of Information Technology and Computer Science, 16(1), 10–18.

    Google Scholar 

  49. Mohamed, M. A. M., El-Azm, A. A., El-Fishwy, N., El-Tokhy, M. A. R., El-Samie, F. E. A., Shawki, F. (2008). Bluetooth performance improvement with existing convolutional codes over AWGN channel. In Proceedings of 2nd international conference on elec engineering. Design and Technology. ICEEDT’08.

  50. El-Bendary, M. A. M. M., El-Azm, A. E. A., El-Fishawy, N. A., Al-Hosarey, F. S. M., Eltokhy, M. A. R., El-Samie, F. E. A., et al. (2012). JPEG image transmission over mobile network with an efficient channel coding and interleaving. International Journal of Electronics, 99(11), 1497–1518.

    Article  Google Scholar 

  51. El-Bendary, M. A. M. (2015). Developing security tools of WSN and WBAN networks applications, LNEE. Japan: Springer.

    Google Scholar 

  52. El-Bendary, M. A. M. (2014). Lower complexity of secured WSN networks. In Developing security tools of WSN and WBAN networks applications. Lecture Notes in Electrical Engineering (Vol. 316, pp. 97–151). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen A. M. El-Bendary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gohary, N.M., El-Bendary, M.A.M., Abd El-Samie, F.E. et al. Utilization of Raptor Codes for OFDM-System Performance Enhancing. Wireless Pers Commun 96, 5555–5585 (2017). https://doi.org/10.1007/s11277-017-4248-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4248-6

Keywords

Navigation