Skip to main content
Log in

The State-of-the-Art in Air Pollution Monitoring and Forecasting Systems Using IoT, Big Data, and Machine Learning

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

This article has been updated

Abstract

The quality of air is closely linked with the life quality of humans, plantations, and wildlife. It needs to be monitored and preserved continuously. Transportations, industries, construction sites, generators, fireworks, and waste burning have a major percentage in degrading the air quality. These sources are required to be used in a safe and controlled manner. Using traditional laboratory analysis or installing bulk and expensive models every few miles is no longer efficient. Smart devices are needed for collecting and analyzing air data. The quality of air depends on various factors, including location, traffic, and time. Recent researches are using machine learning algorithms, big data technologies, and the Internet of Things to propose a stable and efficient model for the stated purpose. This review paper focuses on studying and compiling recent research in this field and emphasizes the Data sources, Monitoring, and Forecasting models. The main objective of this paper is to provide the astuteness of the researches happening to improve the various aspects of air polluting models. Further, it casts light on the various research issues and challenges also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Change history

  • 31 March 2023

    The original online version of this article was revised: The spacing of headings in the pdf version of the article was corrected.

References

  1. WHO (2014). Household air pollution and health, WHO Media centre, www.who.int/mediacentre/factsheets/fs292/en (accessed Apr. 01, 2021).

  2. Arora, P., Rehman, I. H., Suresh, R., Sharma, A., Sharma, D., & Sharma, A. (Nov. 2020). Assessing the role of advanced cooking technologies to mitigate household air pollution in rural areas of Solan, Himachal Pradesh, India. Environ Technol Innov, 20, 101084. https://doi.org/10.1016/j.eti.2020.101084.

  3. Smog | National Geographic Society (2021). https://www.nationalgeographic.org/encyclopedia/smog/ (accessed Apr. 27 2021)

  4. Ha Chi, N. N., & Kim Oanh, N. T. (Feb. 2021). Photochemical smog modeling of PM2.5 for assessment of associated health impacts in crowded urban area of Southeast Asia. Environ Technol Innov, 21, 101241. https://doi.org/10.1016/j.eti.2020.101241.

  5. Iaccarino, L. (Feb. 2021). Association between Ambient Air Pollution and Amyloid Positron Emission Tomography Positivity in Older Adults with Cognitive Impairment, JAMA Neurol, 78(2), 197–207. https://doi.org/10.1001/jamaneurol.2020.3962.

  6. Gilliland, G. L. (May 1998). Human carboxyhemoglobin at 2.2 Å resolution: structure and solvent comparisons of R-state, r2-state and T-state hemoglobins. Acta Crystallogr Sect D Biol Crystallogr, 54(3), 355–366. https://doi.org/10.1107/s0907444997012250.

  7. NationalGeographic (2014). Acid rain facts. National Geographic. http://environment.nationalgeographic.com/environment/global-warming/acid-rain-overview/ (accessed Mar. 10, 2021).

  8. Ren, J. (May 2021). Effects of O3 pollution near formation on crop yield and economic loss. Environ Technol Innov, 22, 101446. https://doi.org/10.1016/j.eti.2021.101446.

  9. Liu, D. (May 2021). Value evaluation system of ecological environment damage compensation caused by air pollution. Environ Technol Innov, 22, 101473. https://doi.org/10.1016/j.eti.2021.101473.

  10. Gulia, S., Shiva Nagendra, S. M., Khare, M., & Khanna, I. (2015). Urban air quality management-A review, Atmos. Pollut. Res.6(2), 286–304, Mar. doi: https://doi.org/10.5094/APR.2015.033.

  11. Borges, M. A., Melo, G. F., De Massaki, C., Igarashi, O., Lopes, P. B., & Silva, L. A. (2017). An architecture for the internet of things and the use of big data techniques in the analysis of carbon monoxide, in Proceedings – 2017 IEEE International Conference on Information Reuse and Integration, IRI Nov. 2017, vol. 2017-Jan., pp. 184–191. https://doi.org/10.1109/IRI.2017.76.

  12. Moses, L., Tamilselvan, R., & Karthikeyan (2020). IoT enabled Environmental Air Pollution Monitoring and rerouting system using machine learning algorithms. IOP Conf Ser Mater Sci Eng, 955(1). https://doi.org/10.1088/1757-899X/955/1/012005.

  13. Sun, C., Li, V. O. K., Lam, J. C. K., & Leslie, I. (2019). Optimal Citizen-Centric Sensor Placement for Air Quality Monitoring: a Case Study of City of Cambridge, the United Kingdom. IEEE Access: Practical Innovations, Open Solutions, 7, 47390–47400. https://doi.org/10.1109/ACCESS.2019.2909111.

    Article  Google Scholar 

  14. Xiaojun, C., Xianpeng, L., & Peng, X. (2015). IOT-based air pollution monitoring and forecasting system, in International Conference on Computer and Computational Sciences, ICCCS 2015, Dec. 2015, pp. 257–260. https://doi.org/10.1109/ICCACS.2015.7361361.

  15. Ayele, T. W., & Mehta, R. (2018). Air pollution monitoring and prediction using IoT, in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT Sep. 2018, pp. 1741–1745. https://doi.org/10.1109/ICICCT.2018.8473272.

  16. Ben Atitallah, S., Driss, M., Boulila, W., & Ben Ghezala, H. (Nov. 2020). Leveraging Deep Learning and IoT big data analytics to support the smart cities development: review and future directions. Comput Sci Rev, 38, 100303. https://doi.org/10.1016/J.COSREV.2020.100303.

  17. Hajjaji, Y., Boulila, W., Farah, I. R., Romdhani, I., & Hussain, A. (Feb. 2021). Big data and IoT-based applications in smart environments: a systematic review. Comput Sci Rev, 39, 100318. https://doi.org/10.1016/J.COSREV.2020.100318.

  18. Nations, U. (2015). 70/1. Transforming our world: the 2030 Agenda for Sustainable Development Transforming our world: the 2030 Agenda for Sustainable Development Preamble, Accessed: May 06, 2021. [Online]. Available: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf.

  19. Rafaj, P., et al. (Nov. 2018). Outlook for clean air in the context of sustainable development goals. Glob Environ Chang, 53, 1–11. https://doi.org/10.1016/j.gloenvcha.2018.08.008.

  20. EPA, O. U. S. (2019). NAAQS Table | US EPA, Us Epa, https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed Mar. 06, 2021).

  21. Mintz, D. (2016). Technical Assistance Document for the Reporting of Daily Air Quality - the Air Quality Index (AQI), Accessed: Apr. 30, 2021. [Online]. Available: https://www.airnow.gov/sites/default/files/2018-05/aqi-technical-assistance-document-may2016.pdf.

  22. Ameer, S., et al. (2019). Comparative analysis of machine learning techniques for Predicting Air Quality in Smart Cities. IEEE Access: Practical Innovations, Open Solutions, 7, 128325–128338. https://doi.org/10.1109/ACCESS.2019.2925082.

    Article  Google Scholar 

  23. Air Quality Index (AQI) Basics (accessed Apr. 30, 2021). https://web.archive.org/web/20180618144741/https://airnow.gov/index.cfm?action=aqibasics.aqi

  24. Standards - Air Quality - Environment - European Commission (accessed Apr. 30, 2021). https://ec.europa.eu/environment/air/quality/standards.htm

  25. van den Elshout, S., Bartelds, H., Heich, H., & Léger, K. (2012) EUROPEAN UNION European Regional Development Fund Regional Initiative Project Common Information to European Air CAQI Air quality index Comparing Urban Air Quality across., Borders-2012 Dissemination level External Component 5. Accessed: May 07, 2021. [Online]. Available: https://www.airqualitynow.eu/download/CITEAIR-Comparing_Urban_Air_Quality_across_Borders.pdf.

  26. The most polluted cities with the worst air quality in the world, ranked, CBS News. https://www.cbsnews.com/pictures/the-most-polluted-cities-in-the-world-ranked/ (accessed Apr. 26, 2021).

  27. Prime Minister’s Office (2017). Swachh Bharat Abhiyan | Prime Minister of India, Government of India, http://www.pmindia.gov.in/en/major_initiatives/swachh-bharat-abhiyan/ (accessed Apr. 26, 2021).

  28. CPCB | Central Pollution Control Board (2021). https://cpcb.nic.in/about-namp/?&page_id=about-namp (accessed Apr. 30, 2021)

  29. National Ambient Air Quality Standards, India (accessed Apr. 30, 2021). https://cpcb.nic.in/uploads/National_Ambient_Air_Quality_Standards.pdf

  30. Kök, I., Şimşek, M. U., & Özdemir, S., A deep learning model for air quality prediction in smart cities, in Proceedings – 2017 IEEE International Conference on Big Data, Big Data 2017, Jul. 2017, vol. 2018-Janua, pp. 1983–1990. https://doi.org/10.1109/BigData.2017.8258144.

  31. Alaoui, S. S., Aksasse, B., & Farhaoui, Y. (2019). Air pollution prediction through internet of things technology and big data analytics. Int J Comput Intell Stud, 8(3), 177. https://doi.org/10.1504/ijcistudies.2019.102525.

    Article  Google Scholar 

  32. Williams, R. et al. (2018). Peer Review and Supporting Literature Review of Air Sensor Technology Performance Targets. EPA

  33. Lazrak, N., Ouarzazi, J., Zahir, J., & Mousannif, H. (2020). Enabling distributed intelligence in Internet of Things: an air quality monitoring use case, Pers. Ubiquitous Comput, 1–11, https://doi.org/10.1007/S00779-020-01483-3.

  34. What Is the Internet of Things (accessed Apr. 26, 2021). (IoT)? | Oracle India. https://www.oracle.com/in/internet-of-things/what-is-iot/

  35. Kalajdjieski, J., Korunoski, M., Stojkoska, B. R., & Trivodaliev, K. (2020). Smart City Air Pollution Monitoring and Prediction: A Case Study of Skopje, Communications in Computer and Information Science, 1316, 15–27, https://doi.org/10.1007/978-3-030-62098-1_2.

  36. Gerboles, M., Spinelle, L., & Borowiak, A. (2017). Measuring air pollution with low-cost sensors, European Commission

  37. Technical Data MQ-9 Gas Sensor (2022). https://www.electronicoscaldas.com/datasheet/MQ-9_Hanwei.pdf (accessed Nov. 12, 2022)

  38. MQ131 Semiconductor Sensor for Ozone (2022). https://www.allelectronics.com/mas_assets/media/allelectronics2018/spec/MQ-131.pdf (accessed Nov. 12, 2022)

  39. Technical Data MQ-135 Gas Sensor (2022). https://www.olimex.com/Products/Components/Sensors/Gas/SNS-MQ135/resources/SNS-MQ135.pdf (accessed Nov. 12, 2022)

  40. Technical Data MQ-7 Gas Sensor (2022). http://edge.rit.edu/edge/R13401/public/FinalDocuments/Monitor/Appendix B Sensors.pdf (accessed Nov. 12, 2022)

  41. DHT 11 Humidity & Temperature Sensor (2022). https://osoyoo.com/driver/DHT11-datasheet.pdf (accessed Nov.12, 2022)

  42. Toma, C., Alexandru, A., Popa, M., & Zamfiroiu, A. (Aug. 2019). IoT Solution for Smart Cities’ Pollution Monitoring and the Security Challenges. Sensors,19(15), 3401. https://doi.org/10.3390/S19153401.

  43. Kiruthika, R., & Umamakeswari, A. (2017). Low cost pollution control and air quality monitoring system using Raspberry Pi for Internet of Things, in International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS 2017, Jun. 2018, pp. 2319–2326. https://doi.org/10.1109/ICECDS.2017.8389867.

  44. Srivastava, H., Mishra, S., Das, S. K., & Sarkar, S. (2020). “An IoT-Based Pollution Monitoring System Using Data Analytics Approach,” in Lecture Notes in Electrical Engineering, 686,187–198, doi: https://doi.org/10.1007/978-981-15-7031-5_18.

  45. Okokpujie, K., Noma-Osaghae, E., Modupe, O., John, S., & Oluwatosin, O. (2018). A smart air pollution monitoring system. Int J Civ Eng Technol, 9(9), 799–809.

    Google Scholar 

  46. Gupta, H., Bhardwaj, D., Agrawal, H., Tikkiwal, V. A., & Kumar, A. (2019). An IoT Based Air Pollution Monitoring System for Smart Cities, in 1st IEEE International Conference on Sustainable Energy Technologies and Systems, ICSETS Feb. 2019, pp. 173–177. https://doi.org/10.1109/ICSETS.2019.8744949.

  47. Esfahani, S., Rollins, P., Specht, J. P., Cole, M., & Gardner, J. W. (2020). Smart City Battery Operated IoT Based Indoor Air Quality Monitoring System, in Proceedings of IEEE Sensors, Oct. vol. 2020-Oct. https://doi.org/10.1109/SENSORS47125.2020.9278913.

  48. Dur, T. H., Arcucci, R., Mottet, L., Solana, M. M., Pain, C., & Guo, Y. K. (Apr. 2020). Weak constraint gaussian processes for optimal sensor placement. Journal of Computer Science, 42, 101110. https://doi.org/10.1016/J.JOCS.2020.101110.

  49. Krause, A., Singh, A., & Guestrin, C. (2008). Near-Optimal Sensor Placements in Gaussian processes: theory, efficient algorithms and empirical studies. J Mach Learn Res, 9, 235–284.

    MATH  Google Scholar 

  50. Longi, K. et al. (2020) Sensor Placement for Spatial Gaussian Processes with Integral Observations. Proceedings of Machine Learning Research 124, 1009-1018

  51. Tajnafoi, G. (2021). Variational Gaussian Process for Optimal Sensor Placement, Appl. Math66(2), 287–317. https://doi.org/10.21136/AM.2021.0307-19.

  52. Singh, S., Singh, P., Garg, R., & Mishra, P. K. (2015) Big Data: Technologies, Trends and Applications, Int. J. Comput. Sci. Inf. Technol., 6(5), 4633–4639, Accessed: May 04, 2021. [Online]. Available: www.ijcsit.com.

  53. Hrehova, S. (2018). Brief overview of the concept of big data. Dec. https://doi.org/10.4108/eai.6-11-2018.2279366.

    Article  Google Scholar 

  54. The Origins of Big Data - KDnuggets (accessed May 04, 2021). https://www.kdnuggets.com/2017/02/origins-big-data.html

  55. Ward, J. S., & Barker, A. (2013). Undefined By Data: A Survey of Big Data Definitions, Accessed: May 04, 2021. [Online]. Available: http://bigdatawg.nist.gov/home.php.

  56. Cartledge, C. (2016). “How Many Vs are there in Big Data?

  57. Raza, M. U., & Xujian, Z. (2020). A Comprehensive Overview of BIG DATA Technologies: A Survey, in ACM International Conference Proceeding Series, May pp. 23–31. https://doi.org/10.1145/3404687.3404694.

  58. Louridas, P., & Ebert, C. (Sep. 2016). Machine learning. IEEE Software, 33(5), 110–115. https://doi.org/10.1109/MS.2016.114.

  59. Talabis, M. R. M., McPherson, R., Miyamoto, I., Martin, J. L., & Kaye, D. (2015). Analytics defined. in Information Security Analytics (pp. 1–12). Elsevier.

  60. Ding, Z., Huang, Y., Yuan, H., & Dong, H. (Jan. 2020). Introduction to reinforcement learning. Deep Reinf Learn Fundam Res Appl, 47–123. https://doi.org/10.1007/978-981-15-4095-0_2/COVER.

  61. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1995). An introduction to reinforcement learning. Biol Technol Intell Auton Agents, 90–127. https://doi.org/10.1007/978-3-642-79629-6_5.

  62. Hyndman, R. J., & G. Athanasopoulos (2021) Forecasting: Principles and Practice (3rd ed)

  63. Assimakopoulos, V., & Nikolopoulos, K. (2000). The theta model: a decomposition approach to forecasting, Int. J. Forecast, 16(4), 521–530, https://doi.org/10.1016/S0169-2070(00)00066-2.

  64. Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov Models. IEEE ASSP Mag, 3(1), 4–16. https://doi.org/10.1109/MASSP.1986.1165342.

    Article  Google Scholar 

  65. Gómez-Losada, Á., Pires, J. C. M., & Pino-Mejías, R. (2018). Modelling background air pollution exposure in urban environments: Implications for epidemiological research, Environ. Model. Softw, 106, 13–21. https://doi.org/10.1016/J.ENVSOFT.2018.02.011.

  66. Bontempi, G., Ben Taieb, S., & Le Borgne, Y. A. (2012). Machine learning strategies for Time Series forecasting. Lect Notes Bus Inf Process, 138 LNBIP, 62–77. https://doi.org/10.1007/978-3-642-36318-4_3.

    Article  Google Scholar 

  67. Das, R., Middya, A. I., & Roy, S. (2021). High granular and short term time series forecasting of $$\hbox PM2.5 air pollutant - a comparative review, Artif. Intell. Rev. 55, 1253-1287. https://doi.org/10.1007/S10462-021-09991-1.

  68. Calkoen, F., Luijendijk, A., Rivero, C. R., Kras, E., & Baart, F. (2021). Traditional vs. Machine-Learning Methods for Forecasting Sandy Shoreline Evolution Using Historic Satellite-Derived Shorelines, Remote Sens. 13(5), 934. https://doi.org/10.3390/RS13050934.

  69. Oancea, B., & Ciucu, Ş. C. (2014). Time series forecasting using neural networks, Proc. Int. Conf. APL Lang. its Appl. APL 1994, pp. 86–94, Jan.

  70. Wang, Y. (2017). A new concept using LSTM Neural Networks for dynamic system identification, in Proceedings of the American Control Conference, Jun. pp. 5324–5329, doi: https://doi.org/10.23919/ACC.2017.7963782.

  71. Wang, J. Air quality data analysis and forecasting platform based on big data, in Proceedings – 2019 Chinese Automation Congress, CAC 2019, Nov. 2019, pp. 2042–2046. https://doi.org/10.1109/CAC48633.2019.8996332.

  72. Nandini, K., & Fathima, G. (2019). Urban Air Quality Analysis and Prediction Using Machine Learning, in 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing and Communication Engineering, ICATIECE, pp. 98–102. https://doi.org/10.1109/ICATIECE45860.2019.9063845.

  73. Mahalingam, U., Elangovan, K., Dobhal, H., Valliappa, C., Shrestha, S., & Kedam, G. (2019). A machine learning model for air quality prediction for smart cities, in International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2019, pp. 452–457. https://doi.org/10.1109/WiSPNET45539.2019.9032734.

  74. Ma, J., et al. (Jan. 2020). Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. Journal Of Cleaner Production, 244, 118955. https://doi.org/10.1016/j.jclepro.2019.118955.

  75. Doreswamy, K. S., Harishkumar, Y., Km, & Gad, I. (2020). Forecasting Air Pollution Particulate Matter (PM2.5) Using Machine Learning Regression Models, in Procedia Computer Science, 171, 2057–2066. https://doi.org/10.1016/j.procs.2020.04.221.

  76. Xayasouk, T., & Lee, H., (2018) Air Pollution Prediction System Using Deep Learning (Oct. 2018). WIT Trans. Ecol. Environ., 230,71–79. https://doi.org/10.2495/AIR180071.

  77. Barthwal, A., Acharya, D., & Lohani, D. (2021). Prediction and analysis of particulate matter (PM2.5 and PM10) concentrations using machine learning techniques, J. Ambient Intell. Humaniz. Comput. 2021, 1–16,. https://doi.org/10.1007/S12652-021-03051-W.

  78. Jeya, S., & Sankari, L. (2020). Air Pollution Prediction by Deep Learning Model, Proc. Int. Conf. Intell. Comput. Control Syst. ICICCS 2020, pp. 736–741, May. https://doi.org/10.1109/ICICCS48265.2020.9120932.

  79. Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering, Atmos. Pollut. Res, 9(5), 912–922. https://doi.org/10.1016/J.APR.2018.02.006.

  80. Chang, Y. S., Chiao, H. T., Abimannan, S., Huang, Y. P., Tsai, Y. T., & Lin, K. M. (Aug. 2020). An LSTM-based aggregated model for air pollution forecasting. Atmos Pollut Res, 11(8), 1451–1463. https://doi.org/10.1016/J.APR.2020.05.015.

  81. Moursi, A. S., El-Fishawy, N., Djahel, S., & Shouman, M. A. (2021). An IoT enabled system for enhanced air quality monitoring and prediction on the edge, Complex Intell. Syst1, 1–25. https://doi.org/10.1007/S40747-021-00476-W.

  82. Diaconescu, E., The use of NARX Neural Networks to predict Chaotic Time Series.

  83. Ketu, S., & Mishra, P. K. (2021). Scalable kernel-based SVM classification algorithm on imbalance air quality data for proficient healthcare, Complex Intell. Syst1, 1–19. https://doi.org/10.1007/S40747-021-00435-5.

  84. BF, W. (1995). The Chi square test: an introduction, COMSIG Rev, 4(3), 61–64

  85. Zhong, H., Yin, C., Wu, X., Luo, J., & He, J. (2020). AirRL: a reinforcement Learning Approach to Urban Air Quality Inference. Mar. https://doi.org/10.48550/arxiv.2003.12205.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Amisha Gangwar, Sudhakar Sing, Richa Mishra, Shiv Prakash; Methodology: Amisha Gangwar, Sudhakar Sing, Richa Mishra, Shiv Prakash; Formal analysis and investigation: Amisha Gangwar, Sudhakar Singh, Richa Mishra, Shiv Prakash; Writing - original draft preparation: Amisha Gangwar, Sudhakar Singh; Writing - review and editing: Sudhakar Singh, Richa Mishra, Shiv Prakash; Resources: Amisha Gangwar, Sudhakar Singh, Richa Mishra, Shiv Prakash; Supervision: Sudhakar Singh, Richa Mishra, Shiv Prakash.

Corresponding author

Correspondence to Sudhakar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: List of Acronyms

Appendix: List of Acronyms

Acronym

Full Name

ADB

Ada Boost Algorithm

ANN

Artificial Neural Network

AQI

Air Quality Index

ARIMA

Auto-Regressive Integrated Moving Average

HMM

Hidden Markov Model

BB

Bagging and Boosting

BiLSTM

Bi-directional LSTM

BMR

Bangkok Metropolitan Region

BP

Backward Propagation

BPNN

Back Propagation Neural Network

CO

Carbon Monoxide

COPD

Chronic Obstructive Pulmonary Disease

CPCB

Central Pollution Control Board

DES

Damped Exponential Smoothing

DNN

Deep Neural Network

DTR

Decision Tree Regression

EAQI

European Air Quality Index

EPA

Environmental Protection Agency

ETS

Error, Trend, and Seasonality

EU

European Union

GBDT

Gradient Boosted Decision Trees

GBM

Gradient Boosting Machine

GBR

Gradient Boosting Regression

GBR

Gradient Boosting Regressor

GBT

Gradient-Boosted Tree

GNB

Gaussian NB Algorithm

HAQ

Household Air Quality

HDFS

Hadoop Distributed File System

IAQI

Indoor Air Quality Index

IoT

Internet of Things

kNN

K Nearest Neighbors

KNR

K Neighbors Regressor

LR

Logistic Regression

LSTM

Long Short-Term Memory

MAE

Mean Absolute Error

ME

Mean Error

ML

Machine Learning

MLP

Multilayer Perceptron Algorithm

MLP

Multilayer Perceptron Regression

MLPR

Multilayer Perception Regression

MLR

Multiple Linear Regression

NAMP

National Air Monitoring Programs

NAQI

National Air Quality Index

NARX

Non-linear AutoRegression with eXogenous

NB-IoT

NarrowBand-Internet of Things

NO2

Nitrogen Dioxide ()

NRMSE

Normalized Root Mean Square Error

O3

Ozone

PCA

Principal Component Analysis

PM

Particulate Matter or Particle Pollution

PPs

Partial Plots

RE

Relative Error

RF

Random Forest

RFR

Random Forest Regression

RMSE

Root Mean Squared Error

RNN

Recurrent Neural Network

SES

Simple Exponential Smoothing

SMAPE

Symmetric Mean Absolute Percentage Error

SO2

Sulphur Dioxide

SVM

Support Vector Machines

SVR

Support Vector Regression

SVR-RBF

Support Vector Regression - Radial Basis Function

TAQMN

Taiwan Air Quality Monitoring Network

TEPA

Taiwan Environmental Protection Agency

TVOC

Total Volatile Organic Compounds

US EPA

US Environmental Protection Agency

VIR

Variation Importance Ranking

WHO

World Health Organisation

XGB

Extreme Gradient Boost

XGBoost

Extreme Gradient Boosting

XGBRF

Random Forests in XGBoost

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, A., Singh, S., Mishra, R. et al. The State-of-the-Art in Air Pollution Monitoring and Forecasting Systems Using IoT, Big Data, and Machine Learning. Wireless Pers Commun 130, 1699–1729 (2023). https://doi.org/10.1007/s11277-023-10351-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10351-1

Keywords

Navigation