Skip to main content

Advertisement

Log in

Slotted Rectangular Dielectric Resonator Antenna for the Application of Satellite Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Rectangular Dielectric Resonator Antenna (RDRA) is utilized for the wireless communications system because of its miniaturized size and low profile. This paper presents a design and simulation of slotted RDRA for satellite communication. The major aim of the work is to attain a high gain and radiation efficiency. Hence, the parasitic patch is introduced in this work to achieve this requirement. In this work, the RDRA is designed with a compact size of 10 × 10 × 3 mm, which operates at 17.04 GHz for satellite communication applications. The design is evaluated on the substrate ROGERS RT DUROID 5880, and the antenna comprises Alumina (Al2O3) ceramic material. The slotted design provides better impedance bandwidth and gain. The entire work is simulated in Ansys HFSS software. The performance measures like gain, return loss, radiation pattern, VSWR and directivity are simulated and fabricated. The proposed design provides circularly polarized characteristics at 3 dB and better radiation efficiency of 100%. At last, the fabricated design prototype is analyzed and provides better performance. The simulated and fabricated outcomes proved that the proposed slotted RDRA is efficiently exploited for satellite communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article.

References

  1. Naik, K. K., & Sri, P. V. A. (2018). Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications. Progress in Electromagnetics Research M, 63, 163–173.

    Article  Google Scholar 

  2. Singh, P. P., & Sharma, S. K. (2021). Design and fabrication of a triple band microstrip antenna for WLAN, satellite tv and radar applications. Progress in Electromagnetics Research C, 117, 277–289.

    Article  Google Scholar 

  3. Rao, S. J. M., Dalsania, P. C., Chidurala, S., Krishna, C. M., Narayan, P., & Prasad, D. D. (2022). Fractal segmented lotus shape planar monopole antenna for multiband applications. Materials Today: Proceedings, 66, 3450–3456.

    Google Scholar 

  4. Gupta, R., Varshney, G., & Yaduvanshi, R. S. (2021). Tunable terahertz circularly polarized dielectric resonator antenna. Optik, 239, 166800.

    Article  Google Scholar 

  5. Agrawal, S., Gupta, R. D., Parihar, M. S., & Kondekar, P. N. (2017). A wideband high gain dielectric resonator antenna for RF energy harvesting application. AEU-International Journal of Electronics and Communications, 78, 24–31.

    Google Scholar 

  6. Lin, K. Z., & Wu, T. T. (2022). Dual-band circularly polarized hybrid dielectric resonator antenna with gain enhancement. AEU-International Journal of Electronics and Communications, 146, 154121.

    Google Scholar 

  7. Kumar, G., Singh, M., Ahlawat, S., & Yaduvanshi, R. S. (2019). Design of stacked rectangular dielectric resonator antenna for wideband applications. Wireless Personal Communications, 109(3), 1661–1672.

    Article  Google Scholar 

  8. Zainud-Deen, S. H., Badawy, M. M., & Malhat, H. A. E. A. (2019). Dielectric resonator antenna loaded with reconfigurable plasma metamaterial polarization converter. Plasmonics, 14(6), 1321–1328.

    Article  Google Scholar 

  9. Sharma, P., Vaish, A., & Yaduvanshi, R. S. (2019). The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. Journal of Computational Electronics, 18(4), 1333–1341.

    Article  Google Scholar 

  10. Kumar, A., & Yaduvanshi, R. S. (2021). Design and analysis of circularly polarized dielectric resonator antenna. Wireless Personal Communications, 118(4), 2663–2673.

    Article  Google Scholar 

  11. Mohanty, S., & Mohapatra, B. (2021). Leaky waveguide based dielectric resonator antenna for millimeter-wave applications. Transactions on Electrical and Electronic Materials, 22(3), 310–316.

    Article  Google Scholar 

  12. Yadav, S. K., Kaur, A., & Khanna, R. (2021). Compact rack shaped MIMO dielectric resonator antenna with improved axial ratio for UWB applications. Wireless Personal Communications, 117(2), 591–606.

    Article  Google Scholar 

  13. Khalily, M., Rahim, M. K. A., & Kishk, A. A. (2011). Bandwidth enhancement and radiation characteristics improvement of rectangular dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 10, 393–395.

    Article  Google Scholar 

  14. Maayah, B., Arqub, O. A., Alnabulsi, S., & Alsulami, H. (2022). Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme. Chinese Journal of Physics, 80, 463–483.

    Article  MathSciNet  Google Scholar 

  15. Aal, M. A., Djennadi, S., Arqub, O. A., Alsulami, H. (2022). On the recovery of a conformable time-dependent inverse coefficient problem for diffusion equation of periodic constraints type and integral over-posed data. Mathematical Problems in Engineering, 2022.

  16. Cevikel, A. C., Bekir, A., Abu Arqub, O., Abukhaled, M. (2022). Solitary wave solutions of Fitzhugh–Nagumo-type equations with conformable derivatives. Frontiers in Physics, 1064.

  17. Sweis, H., Arqub, O. A., Shawagfeh, N. (2022). Fractional delay integrodifferential equations of nonsingular kernels: existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials. International Journal of Modern Physics C, (б/н), 2350052–2350052.

  18. Kumar, G., & Yaduvanshi, R. S. (2021). Dielectric resonator antenna with hollow cylinder for wide bandwidth. In International conference on soft computing and signal processing Springer, Singapore 441–446.

  19. Hwang, Y., Zhang, Y. P., Luk, K. M., & Yung, E. K. (1997). Gain-enhanced miniaturized rectangular dielectric resonator antenna. Electronics Letters, 33(5), 350–352.

    Article  Google Scholar 

  20. Petosa, A., & Thirakoune, S. (2011). Rectangular dielectric resonator antennas with enhanced gain. IEEE Transactions on Antennas and Propagation, 59(4), 1385–1389.

    Article  Google Scholar 

  21. Dash, S. K. K., Cheng, Q. S., & Khan, T. (2021). A superstrate loaded aperture coupled dual-band circularly polarized dielectric resonator antenna for X-band communications. International Journal of Microwave and Wireless Technologies, 13(8), 867–874.

    Article  Google Scholar 

  22. Sun, W. J., Yang, W. W., Chu, P., & Chen, J. X. (2019). A wideband stacked dielectric resonator antenna for 5G applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(10), e21897.

    Article  Google Scholar 

  23. Anuar, S. U., Jamaluddin, M. H., Din, J., Kamardin, K., Dahri, M. H., & Idris, I. H. (2020). Triple band MIMO dielectric resonator antenna for LTE applications. AEU-International Journal of Electronics and Communications, 118, 153172.

    Google Scholar 

  24. Singhwal, S. S., Kanaujia, B. K., Singh, A., Kishor, J., & Matekovits, L. (2020). Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications. Journal of Electromagnetic Waves and Applications, 34(9), 1180–1194.

    Article  Google Scholar 

  25. Altaf, A., & Seo, M. (2020). Dual-band circularly polarized dielectric resonator antenna for WLAN and WiMAX applications. Sensors, 20(4), 1137.

    Article  Google Scholar 

  26. Gotra, S., Pandey, V. S., & Yaduvanshi, R. S. (2021). A wideband graphene coated dielectric resonator antenna with circular polarization generation technique for THz applications. Superlattices and Microstructures, 150, 106754.

    Article  Google Scholar 

  27. Pathak, D., & Kushwah, V. S. (2021). Wide band hybrid dielectric resonator antenna for C band using FR-4 material. Materials Today: Proceedings, 47, 6719–6723.

    Google Scholar 

  28. Shahadan, N. H., Jamaluddin, M. H., Kamarudin, M. R., Yamada, Y., Khalily, M., Jusoh, M., & Dahlan, S. H. (2017). Steerable higher order mode dielectric resonator antenna with parasitic elements for 5G applications. IEEE Access, 5, 22234–22243.

    Article  Google Scholar 

  29. Chauhan, M., & Mukherjee, B. (2019). Investigation of T-shaped compact dielectric resonator antenna for wideband application. Radioelectronics and Communications Systems, 62(11), 594–603.

    Article  Google Scholar 

  30. Tong, C. W., Tang, H., Qin, W., Yang, W. W., & Chen, J. X. (2020). A Ku band frequency-reconfigurable dielectric resonator antenna using metallic pillars. Microwave and Optical Technology Letters, 62(4), 1760–1764.

    Article  Google Scholar 

  31. Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antennas Baldock, UK: Research Studies Press 366.

  32. Mohanty, S., Khan, A., Mohapatra, B. (2020). Embedded rectangular dielectric resonator antenna for KuBand applications. Available at SSRN 3549250.

  33. Nalanagula, R., Darimireddy, N. K., Kumari, R., & Park, C. W. (2022). Dual circularly polarized semi-cylindrical hybrid dielectric resonator antenna for X and Ku-band applications. International Journal of RF and Microwave Computer-Aided Engineering, 32(9), e23279.

    Article  Google Scholar 

  34. Anantha, B., & Merugu, L. (2019). Dual-band rectangular dielectric resonator antenna. In 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting IEEE, 75–76.

  35. Zubir, I. A., Othman, M., Ullah, U., Kamal, S., Ab Rahman, M. F., Hussin, R., Omar, M. F. B. M., Mohammed, A. S., Ain, M. F. B., Ahmad, Z. A., & Abdullah, M. Z. (2020). A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for Ku and K band applications. IEEE Access, 8, 151219–151228.

    Article  Google Scholar 

Download references

Funding

No funding is provided for the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Madhusmita C. Sahoo.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Consent to Participate

All the authors involved have agreed to participate in this submitted article.

Consent to Publish

All the authors involved in this manuscript give full consent for publication of this submitted article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, M.C., Patani, A. Slotted Rectangular Dielectric Resonator Antenna for the Application of Satellite Communication. Wireless Pers Commun 130, 837–855 (2023). https://doi.org/10.1007/s11277-023-10311-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10311-9

Keywords

Navigation