Skip to main content
Log in

Dielectric Resonator Antenna Loaded with Reconfigurable Plasma Metamaterial Polarization Converter

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a plasma based metamaterial (MM) polarizer is optimized for linear to circular polarization conversion in Ku-band wireless applications. The plasma MM polarizer is design based on the transmission mode. The proposed plasma MM polarizer unit-cell element consists of back-to-back plasma arcs placed on the top and the bottom faces of a dielectric substrate. Polarization Conversion from linear polarized (LP) wave to circular polarized (CP) wave requires that the incident wave is splitted into two orthogonal components with equal magnitudes and π/2 phase difference. The polarization characteristics of the plasma MM polarizer have bandwidth of 17.5% centered around 13.7 GHz. A linearly polarized dielectric resonator antenna (DRA) is designed with impedance bandwidth of 27.05%. The LP-DRA loaded with plasma MM polarizer radiates CP-waves with improved gain of 8.89 dBi. Reconfigurable CP radiation right-hand, left-hand, or linear polarization is achieved when the argon gas in the lower, upper, or both arc-shaped containers is ionized to plasma state. The proposed plasma MM polarizer and the DRA structures are examined utilizing a full-wave simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao SS, Luo Q, Zhu F (2013) Circularly polarized antennas. John Wiley & Sons, New York

    Google Scholar 

  2. Rishani NR (2011) Circularly polarized wearable antenna with EBG for GPS applications. Department of Electrical and Computer Engineering, American University of Beirut, Lebanon

    Google Scholar 

  3. Salah M, and Tiwari VN, (2016) “Review of circular polarization techniques for design of microstrip patch antenna,” International conference on recent cognizance in wireless communication & image processing, pp. 663–669

  4. Gangwar K, Paras, Gangwar RPS (2014) Metamaterials: characteristics, process and applications. Adv Electr Electron Eng 4(1):97–106

    Google Scholar 

  5. S. Zouhdi, S. Ari, and P. Alexey, Metamaterials and plasmonics: fundamentals, modelling, applications, Springer Science & Business Media, USA 2008.

  6. Zainud-Deen SH, Mabrouk AM, Malhat HA (2018) Terahertz graphene based metamaterial transmitarray. Wirel Pers Commun 100(3):1235–1248

    Article  Google Scholar 

  7. Zhu H, Cheung S, Chung K, Yuk T (2013) Linear-to-circular polarization conversion using metasurface. IEEE Trans Antennas and Propag 61(9):4615–4623

    Article  Google Scholar 

  8. Kim C, Ahn H, Elles DS, Machado M, Yoon Y (2010) A high gain circular polarization antenna using metamaterial slabs. IEEE Antennas and Propag. society international symposium, Toronto, p 2010

    Google Scholar 

  9. Wei Z, Cao Y, Fan Y, Yu X, Li H (2011) Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl Phys Lett 99(221907):1–3

    Google Scholar 

  10. M. Malathong, A. Sonsilphong, W. Panpradit, and N. Wongkasem, (2011) “Chiral metamaterial based circularly polarized microstrip antennas,” In IEEE-APS Topical Conference Antennas and Propag. in Wireless Communications (APWC), pp. 898–901.

  11. Liu Y, Song K, Qi Y, Gu S, Zhao X (2013) Investigation of circularly polarized patch antennawith chiral metamaterial. IEEE Antennas and Wireless Propag Lett 12:1359–1362

    Article  Google Scholar 

  12. Lau JY, Hum SV (2010) A planar reconfigurable aperture with lens and reflectarray modes of operation. IEEE Trans Microw Theory Tech 58(12):3547–3555

    Google Scholar 

  13. Jenn DC (2003) “Plasma antennas: Survey of techniques and the current state of the art,” M.S. thesis, Dept. Elect. Comput. Eng., Naval Postgraduate School, Monterey, CA, USA.

  14. Zainud-Deen SH, Malhat HA, Badawy MM, Awadalla KH (2014) Circularly polarized plasma curl antenna for 2.45 GHz portable RFID reader. Plasmonics 9(2):1063–1069

    Article  CAS  Google Scholar 

  15. Zainud-Deen SH, Malhat HA, Gaber SM, Ibrahim M, Awadalla KH (2013) Plasma reflectarrays. Plasmonics 8(3):1469–1475

    Article  CAS  Google Scholar 

  16. Malhat HA, Badawy MM, Zainud-Deen SH, Awadalla KH (2015) Dual-mode plasma reflectarray/transmitarray antennas. IEEE Trans Plasma Sci 43(10):3582–3589

    Article  Google Scholar 

  17. Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. Progress Electromagn Res, PIER 32:65–87

    Article  Google Scholar 

  18. Hutton DV (2004) Fundamentals of finite element analysis. McGraw-Hills Companies, McGraw-Hills

    Google Scholar 

  19. Zainud-Deen SH, Malhat HA, Gaber SM, Awadalla KH (2014) Beam steering plasma reflectarray/transmitarray antennas. Plasmonics 8(4):477–483

    Article  Google Scholar 

  20. Van Roosmalen AJ, Vader PJQ (1990) A model for the power dissipation in RF plasmas. J Appl Phys 68(4):1497–1505

    Article  Google Scholar 

  21. Vendor D, Boswell RW (1990) Numerical modeling of low-pressure RF plasmas. IEEE Trans Plasma Sci 18(4):725–732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Magdy Badawy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Badawy, M.M. & Malhat, H.AA. Dielectric Resonator Antenna Loaded with Reconfigurable Plasma Metamaterial Polarization Converter. Plasmonics 14, 1321–1328 (2019). https://doi.org/10.1007/s11468-019-00996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00996-9

Keywords

Navigation