Skip to main content
Log in

Compact and Hexaband Rectangular Microstrip Patch Antenna for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A Compact Corner Split Ring with Split C Slot Rectangular Microstrip Patch Antenna fed by a 50 Ω microstripline is discussed. A Corner split ring with C shaped slot has been etched in rectangular microstrip antenna. The slot increases the length of the surface current for the dominant mode TM10 leading to the decrease in resonance frequency. Size reduction and hexaband is obtained for the proposed antenna. The proposed antenna provides both size reduction and hexaband and is best suited for wireless communication. The proposed work is simulated using 3DEM of Mentorgraphics and validated. The results show that Hexaband with compactness is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data and Material Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Sharma, M. (2020). Design and analysis of multiband antenna for wireless communication. Wireless Personal Communications, 114, 1389–1402. https://doi.org/10.1007/s11277-020-07425-9

    Article  Google Scholar 

  2. Yang, G., Li, J., Yang, J., & Xing, Z. (2020). Dual-band slot microstrip patch antennas with dual-radiation modes for wireless communication. International Journal of Microwave and Wireless Technologies, 12(2), 155–162.

    Article  Google Scholar 

  3. Hsu, C.-K., & Chung, S.-J. (2015). Compact multiband antenna for handsets with a conducting edge. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/TAP.2015.2473657

    Article  MathSciNet  MATH  Google Scholar 

  4. Baligar, J. S., Revankar, U. K., & Acharya, K. V. (2001). Broadband two layer shorted patch antenna with low cross polarization. Electronic Letters, 3(9), 547–548. https://doi.org/10.1049/el:20010371

    Article  Google Scholar 

  5. Khan, Z., Iqbal, A. R. J., Qamar, A., & Zubair, M. (2018). Double circular ring compact antenna for ultra-wideband applications. IET Microwaves, Antennas & Propagation, 12(13), 2094–2097.

    Article  Google Scholar 

  6. Iqbal, A., Bouazizi, A., Kundu, S., Elfergani, I., & Rodriguez, J. (2019). Dielectric resonator antenna with top loaded parasitic strip elements for dual-band operation. Microwave and Optical Technology Letters, 61(9), 2134–2140. https://doi.org/10.1002/mop.31876

    Article  Google Scholar 

  7. Al-Khaldi, M. (2017). A highly compact multiband antenna for bluetooth/WLAN, WiMAX, and Wi-Fi applications. Microwave And Optical Technology Letters, 59(1), 77–80. https://doi.org/10.1002/mop.30230

    Article  Google Scholar 

  8. Sun, C., Zhao, W., & Bai, B. (2017). A novel compact wideband patch antenna for GNSS application. IEEE Transactions on Antennas and Propagation, 65(12), 7334–7339.

    Article  Google Scholar 

  9. Singh, V., Mishra, B., Tripathi, P. N., & Singh, R. (2016). A compact quad band microstrip antenna for S and C band applications. Microwave and Optical Technology Letters, 58(6), 1365–1369.

    Article  Google Scholar 

  10. Balanis, C. A. (2005). Antenna theory_analysis and design. John Wiley & Sons.

    Google Scholar 

  11. Revansiddappa, S. K., Yadahalli R. M., & Patil S. R. (2016). Compact ring coupled multi band rectangular microstrip patch antenna with C-slot. In 2016 Proceedings of 9th annual International Conference (ATMS-2016), Antenna Test Measurement Society (ATMS), Goa, India, pp. 1–3.

  12. Nasimuddin, N., Chen, Z. N., & Xianming, Q. (2010). Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency-ratio. IEEE Transactions on Antennas and Propagation, 58, 2112–2115. https://doi.org/10.1109/tap.2010.2046851

    Article  Google Scholar 

  13. Hasan, M. N., Chu, S., & Bashir, S. (2019). A DGS monopole antenna loaded with U-shape stub for UWB MIMOapplications. Microwave and Optical Technology Letters, 61(9), 2141–2149. https://doi.org/10.1002/mop.31877

    Article  Google Scholar 

  14. Chen, H., Yang, X., Yin, Y. Z., Fan, S. T., & Wu, J. J. (2013). Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 1440–1443. https://doi.org/10.1109/lawp.2013.2287312

    Article  Google Scholar 

  15. Deshmukh, A. A., & Verma, P. (2019). Multi-band dual polarized variations of modified circular microstrip antennas. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1604179

    Article  Google Scholar 

  16. Liu, Z. Y., Yin, Y. Z., Wen, L. H., Xiao, W. C., Wang, Y., & Zuo, S. L. (2010). A Yshaped tri-band monopole antenna with a parasitic M-strip for PCS and WLAN applications. Journal of Electromagnetic Waves and Applications, 24, 1219–1227. https://doi.org/10.1163/156939310791586089

    Article  Google Scholar 

  17. Yeap, K., Voon, C., Hiraguri, T., & Nisar, H. (2019). A compact dual-band implantable antenna for medical telemetry. Microwave and Optical Technology Letters, 61(9), 2105–2109. https://doi.org/10.1002/mop.31871

    Article  Google Scholar 

  18. Bharathi, A., Merugu, L., & Somasekhar Rao, P. V. D. (2020). Reconfigurable corner truncated square microstrip patch an-tennas for wireless communication applications. IETE Journal of Research, 66(2), 242–255. https://doi.org/10.1080/03772063.2018.1478326

    Article  Google Scholar 

  19. Shirazi, M., Li, T., Gong, X. (2015). Effects of PIN diode switches on the performance of reconfigurable slot-ring antenna. In: IEEE wireless and microwave technology conference (WAMICON), Florida, USA.

  20. Huang, He., Liu, Y., Zhang, S., & Gong, S. (2015). Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 14, 662–665. https://doi.org/10.1109/lawp.2014.2376969

    Article  Google Scholar 

  21. Zhang, H. T., Luo, G. Q., Yuan, B., & Zhang, X. H. (2016). A novel ultra-wideband metamaterial antenna using chessboard-shaped patch. Microwave and Optical Technology Letters, 58(12), 3008–3301.

    Article  Google Scholar 

  22. Chaurasia, P., Kanaujia, B. K., Dwari, S., & Khandelwal, M. K. (2018). Penta- band microstrip patch antenna with small frequency ratios using metamaterial for wireless applications. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S1759078718000570

    Article  Google Scholar 

  23. Padmavati, & Lalitha, Y. S. (2020). Study of circular complementary split ring resonator on a heterogeneous substrate material. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07303-4

    Article  Google Scholar 

  24. Paul, P. M., Kandasamy, K., & Sharawi, M. S. (2018). A tri-band circularly polarized strip and SRR loaded slot antenna. IEEE Transactions on Antennas and Propagation. https://idr.nitk.ac.in/jspui/handle/123456789/9760

  25. Rajkumar, R., & Usha Kiran, K. (2017). A Metamaterial inspired compact open split ring resonator antenna for multiband operation. Wireless Personal Communications, 97(1), 951–965. https://doi.org/10.1007/s11277-017-4545-0

    Article  Google Scholar 

  26. Kumar, R., Tripathy, M. R., & Ronnow, D. (2018). Multi-resonant bowtie antenna with modified symmetric SRR for wireless applications. IETE Journal of Research. https://doi.org/10.1080/03772063.2018.1479663

    Article  Google Scholar 

  27. Malik, J., Kalaria, P. C., & Kartikeyan, M. V. (2013). Complementary Sierpinskigasket fractal antenna for dual-band WiMAX/WLAN (3.5/5.8 GHz) applications. International Journal of Microwave and Wireless Technologies., 5, 499–505. https://doi.org/10.1017/S1759078713000123

    Article  Google Scholar 

  28. Singh, D. K., Kanaujia, B. K., Dwari, S., Pandey, G. P., & Kumar, S. (2015). Multiband circularly polarized stacked microstrip antenna. Progress In Electromagnetics Research C, 56, 55–64. https://doi.org/10.2528/pierc14121101

    Article  Google Scholar 

  29. Vani, R. M., Naveen, S. M., & Hunagund, P. V. (2012). Stacked com-pact ring-coupled rectangular microstrip antenna for multiband applications. Microwave and Optical Technology Letters, 54(6), 1387–1391. https://doi.org/10.1002/mop.26842

    Article  Google Scholar 

Download references

Funding

No funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Revanasiddappa Kinagi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinagi, R., Yadahalli, R.M. & Patil, S. Compact and Hexaband Rectangular Microstrip Patch Antenna for Wireless Applications. Wireless Pers Commun 128, 345–363 (2023). https://doi.org/10.1007/s11277-022-09958-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09958-7

Keywords

Navigation