Skip to main content
Log in

Analysis of ARROW Waveguide Based Microcantilever for Sensing Application

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Analysis of microcantilever beam and anti-resonant reflecting optical waveguide (ARROW) microcantilever waveguides are presented in this work. The silicon nitride material is used to generate microcantilever beams in which varying electric voltage is applied to create the deformation and thus leads to displacement of the beam due to bending of the cantilever tip. Thereby, an integration of micro electro mechanical systems (MEMS) cantilever and ARROW waveguide produced a new ARROW microcantilever waveguide reasonable for obtaining a high quality factor, electric filed intensity and sensitivity. These parameters are analyzed by varying the air gap distance between cantilever waveguide and output waveguide. Especially, maximum finite-difference time-domain (FDTD) sensitivity is reached to 73.78 nm/RIU for the proposed ARROW microcantilever waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

References

  1. Ansari, M. Z., and Cho, C., (2008). "Design and analysis of a high sensitive microcantilever biosensor for biomedical applications." In 2008 International Conference on BioMedical Engineering and Informatics, (vol. 2, pp. 593–597). IEEE.

  2. Gupta, Raj K. (1997). “Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS).” Ph D diss., Massachusetts Institute of Technology

  3. Basak, S., Raman, A., & Garimella, S. V. (2006). Hydrodynamic loading of microcantilevers vibrating in viscous fluids. Journal of Applied Physics, 99(11), 114906.

    Article  Google Scholar 

  4. Sader, J. E. (1998). Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 84(1), 64–76.

    Article  Google Scholar 

  5. Agarwal, P., Deepak, S., Sebastian, A., Pozidis, H. and Salapaka M. V. (2008). "Modeling and identification of the dynamics of electrostatically actuated microcantilever with integrated thermal sensor." In 2008 47th IEEE Conference on Decision and Control, (pp. 2624–2630). IEEE.

  6. Jing, Y., Fan, G., Wang, R., Zhang, Z., Wang, M., Cai, X., Wei, J., Chen, X., Li, H., & Li, Y. (2020). Analysis for an improved nanomechanical microcantilever sensor on optical waveguides. IEEE Access, 8, 63856–63861.

    Article  Google Scholar 

  7. Lavrik, N. V., & Datskos, P. G. (2003). Femtogram mass detection using photothermally actuated nanomechanical resonators. Applied physics letters, 82(16), 2697–2699.

    Article  Google Scholar 

  8. Boisen, A., Thaysen, J., Jensenius, H., & Hansen, O. (2000). Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy, 82(1–4), 11–16.

    Article  Google Scholar 

  9. Caruntu, D. I., & Martinez, I. (2014). Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. International Journal of Non-Linear Mechanics, 66, 28–32.

    Article  Google Scholar 

  10. Chaterjee, S., & Pohit, G. (2009). A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. Journal of Sound and Vibration, 322(4–5), 969–986.

    Article  Google Scholar 

  11. Gajula, D., Bayram F., Jahangir, I., Khan, D., and Koley, G., (2019). "Dynamic response of VO 2 mesa based GaN microcantilevers for sensing applications." In 2019 IEEE SENSORS, (pp. 1–4). IEEE.

  12. Green, C. P., & Sader, J. E. (2002). Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 92(10), 6262–6274.

    Article  Google Scholar 

  13. Plaza, J. A., Kirill Zinoviev, G., Villanueva, M. Á., Tamayo, J., Domínguez, C., & Lechuga, L. M. (2006). T-shaped microcantilever sensor with reduced deflection offset. Applied Physics Letters, 89(9), 0941.

    Article  Google Scholar 

  14. Nezhad, A. S., Ghanbari, M., Agudelo, C. G., Packirisamy, M., Bhat, R. B., & Geitmann, A. (2013). PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sensors Journal, 13(2), 601–609.

    Article  Google Scholar 

  15. Nezhad, Amir Sanati, Mahmoud Ghanbari, Carlos Gustavo Agudelo, Muthu Packirisamy, and Rama Bhat (2011). "Simulation of PDMS microcantilever deflection using integrated optical fibers." In Photonics North 2011, vol. 8007, p. 80071R. International Society for Optics and Photonics.

  16. Sarwar, A., Voulgaris, P. G., and Salapaka, S. M., (2007) "Modeling and distributed control of an electrostatically actuated microcantilever array." In 2007 American Control Conference, (pp. 4240–4245). IEEE.

  17. Zhang, X. R., & Xianfan, Xu. (2005). Laser bending for high-precision curvature adjustment of microcantilevers. Applied Physics Letters, 86(2), 021114.

    Article  Google Scholar 

  18. Zhou, W., Khaliq, A., Tang, Y., Ji, H., & Selmic, R. R. (2005). Simulation and design of piezoelectric microcantilever chemical sensors. Sensors and Actuators A: Physical, 125(1), 69–75.

    Article  Google Scholar 

  19. Zinoviev, K., Dominguez, C., Plaza, J. A., Busto, V. J. C., & Lechuga, L. M. (2006). A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces. Journal of Lightwave Technology, 24(5), 2132l.

    Article  Google Scholar 

  20. Zinoviev, K., Dominguez, C., Plaza, J. A., & Lechuga, L. M. (2008). Optical waveguide cantilever actuated by light. Applied Physics Letters, 92(1), 011908.

    Article  Google Scholar 

  21. Hu, Y.-C., Chang, C. M., & Huang, S. C. (2004). Some design considerations on the electrostatically actuated microstructures. Sensors and Actuators A: Physical, 112(1), 155–161.

    Article  Google Scholar 

  22. Mehdipour, I., Erfani-Moghadam, A., & Mehdipour, C. (2013). Application of an electrostatically actuated cantilevered carbon nanotube with an attached mass as a bio-mass sensor. Current Applied Physics, 13(7), 1463–1469.

    Article  Google Scholar 

  23. Ji, H.-F., Hansen, K. M., Hu, Z., & Thundat, T. (2001). Detection of pH variation using modified microcantilever sensors. Sensors and Actuators B: Chemical, 72(3), 233–238.

    Article  Google Scholar 

  24. Mishra, R., Grange, W., & Hegner, M. (2012). Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups. Journal of Sensors, 2012, 1–6.

    Article  Google Scholar 

  25. Kwon, B., MyunghoonSeong, J.-N., Rosenberger, M. R., Schulmerich, M. V., Bhargava, R., Cunningham, B. T., & King, W. P. (2013). Large infrared absorptance of bimaterial microcantilevers based on silicon high contrast grating. Journal of Applied Physics, 114(15), 53511.

    Article  Google Scholar 

  26. Mishra, N. K., and Kale, B. S., (2017). "Fabrication of tapered and conductive microcantilever." In 2017 International Conference on Nascent Technologies in Engineering (ICNTE), (pp. 1–4). IEEE.

  27. Moulin, A. M., O’shea, S. J., & Welland, M. E. (2000). Microcantilever-based biosensors. Ultramicroscopy, 82(1–4), 23–31.

    Article  Google Scholar 

  28. Shang-Rou, H., Shaw, S. W., & Pierre, C. (1994). Normal modes for large amplitude vibration of a cantilever beam. International Journal of Solids and Structures, 31(14), 1981–2014.

    Article  Google Scholar 

  29. Nordström, M., & Zauner, D. A. (2007). Integrated optical readout for miniaturization of cantilever-based sensor system. Applied physics letters, 91, 103512.

    Article  Google Scholar 

  30. Baba, T., & Kokubun, Y. (1992). Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions. IEEE Journal of Quantum electronics, 28(7), 1689–1700.

    Article  Google Scholar 

  31. Lazareva, E. N., & Tuchin, V. V. (2018). Blood refractive index modelling in the visible and near infrared spectral regions. Journal of Biomedical Photonics & Engineering, 4(1), 010503.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Principal and Management of SVIT, Bangalore and also VTU, Belagavi, Karnataka for inculcating the research culture.

Funding

The research was funded by VGST IT, BT and ST GOK, Grant No. VGST/CSIEE.GRD/466.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the work: KA; methodology, KA.; validation, KA., KS; writing—original draft preparation, KA.; writing—review and editing, NKS; supervision, KN; project administration, KN.; funding acquisition, KN.

Corresponding author

Correspondence to K. Asha.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha, K., Krishnaswamy, N. & Suryanarayana, N.K. Analysis of ARROW Waveguide Based Microcantilever for Sensing Application. Wireless Pers Commun 126, 3435–3453 (2022). https://doi.org/10.1007/s11277-022-09872-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09872-y

Keywords

Navigation