Skip to main content
Log in

Analysis of Side Information Impact on the Coverage Region of Wireless Wiretap Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Analyzing wireless communication performances by using information-theoretic results is of practical importance. In this paper, first, an achievable secrecy rate region and an outer bound on the secrecy capacity region for the discrete alphabet and memoryless wiretap channel with side information non-causally known at the transmitter are obtained. Then, by extending the results to the continuous alphabet wireless wiretap channel and by deriving a closed-form expression on the secrecy coverage region (SCR), as a remarkable wireless performance factor, impact of side information on the SCR is analyzed and it is shown that side information increases the SCR as expected intuitively. Numerical evaluation of theoretical results is done finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability and Materials

Not available.

Code Availability

Not available.

References

  1. Schneier, B. (1998). Cryptographic design vulnerabilities. Computer, 31(9), 29–33.

    Article  Google Scholar 

  2. Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715.

    Article  MathSciNet  Google Scholar 

  3. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  Google Scholar 

  4. Csiszár, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.

    Article  MathSciNet  Google Scholar 

  5. Leung-Yan-Cheong, S., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.

    Article  MathSciNet  Google Scholar 

  6. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.

    Article  MathSciNet  Google Scholar 

  7. Ai, Y., Kong, L., & Cheffena, M. (2019). Secrecy outage analysis of double shadowed Rician channels. Electronics Letters, 55(13), 765–767.

    Article  Google Scholar 

  8. Li, J., & Petropulu, A. P. (2011). Ergodic secrecy rate for multiple-antenna wiretap channels with Rician fading. IEEE Transactions on Information Forensics and Security, 6(3), 861–867.

    Article  Google Scholar 

  9. Liu, X. (2012). Probability of strictly positive secrecy capacity of the Rician-Rician fading channel. IEEE Wireless Communications Letters, 2(1), 50–53.

    Article  Google Scholar 

  10. Omri, A., & Hasna, M. O. (2018). Average secrecy outage rate and average secrecy outage duration of wireless communication systems with diversity over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 17(6), 3822–3833.

    Article  Google Scholar 

  11. Kong, L., & Kaddoum, G. (2018). On physical layer security over the fisher-snedecor wiretap fading channels. IEEE Access, 6, 39466–39472.

    Article  Google Scholar 

  12. Badarneh, O. S., Sofotasios, P. C., Muhaidat, S., Cotton, S. L., Rabie K., & Al-Dhahir, N. (2018). On the secrecy capacity of Fisher-Snedecor F fading channels. In 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 102–107.

  13. Ghadi, F. R., & Hodtani, G. A. (2020). Copula-based analysis of physical layer security performances over correlated Rayleigh fading channels. IEEE Transactions on Information Forensics and Security, 16, 431–440.

    Article  Google Scholar 

  14. Shannon, C. E. (1958). Channels with side information at the transmitter. IBM journal of Research and Development, 2(4), 289–293.

    Article  MathSciNet  Google Scholar 

  15. Gel’fand, S. I., & Pinsker, M. S. (1980). Coding for Channels with Random Parameters. Probl. Contr. Inform. Theory, 9(1), 19–31.

    MathSciNet  MATH  Google Scholar 

  16. Cover, T. M., & Chiang, M. (2002). Duality between channel capacity and rate distortion with two-sided state information. IEEE Transactions on Information Theory, 48(6), 1629–1638.

    Article  MathSciNet  Google Scholar 

  17. Anzabi-Nezhad, N. S., Hodtani, G. A., & Kakhki, M. M. (2012). Information theoretic exemplification of the receiver re-cognition and a more general version for the costa theorem. IEEE Communications Letters, 17(1), 107–110.

    Article  Google Scholar 

  18. Anzabi-Nezhad, N. S., Hodtani, G. A., & Kakhki, M. M. (2015). A new and more general capacity theorem for the gaussian channel with two-sided input-noise dependent state information. arXiv preprint arXiv:1507.04924.

  19. Chen, Y., Han, A. J., & Vinck. (2008). Wiretap channel with side information. IEEE Transactions on Information Theory, 54(1), 395–402.

    Article  MathSciNet  Google Scholar 

  20. Chia, Y.-K., & El Gamal, A. (2012). Wiretap channel with causal state information. IEEE Transactions on Information Theory, 58(5), 2838–2849.

    Article  MathSciNet  Google Scholar 

  21. Liu, W., & Chen, B. (2007). Wiretap channel with two-sided channel state information. In 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, pp. 893–897.

  22. Xu, P., Ding, Z., Dai, X., & Leung, K. K. (2013). A general framework of wiretap channel with helping interference and state information. IEEE Transactions on Information Forensics and Security, 9(2), 182–195.

    Article  Google Scholar 

  23. Costa, M. (1983). Writing on dirty paper (Corresp.). IEEE Transactions on Information Theory, 29(3), 439–441.

    Article  MathSciNet  Google Scholar 

  24. Aggarwal, V., Bennatan, A., & Robert Calderbank, A. (2009). On maximizing coverage in gaussian relay channels. IEEE Transactions on Information Theory, 55(6), 2518–2536.

    Article  MathSciNet  Google Scholar 

  25. Alizadeh, A., & Hodtani, G. A. (2015). Analysis of capacity and coverage region for Rayleigh fading MIMO relay channel. International Journal of Communication Systems, 28(8), 1462–1474.

    Article  Google Scholar 

  26. Jeffrey, A., & Zwillinger, D. (Eds.). (2007). Table of integrals, series, and products. Elsevier.

    Google Scholar 

  27. Alkheir, A. A., & Ibnkahla, M. (2013). An accurate approximation of the exponential integral function using a sum of exponentials. IEEE Communications Letters, 17(7), 1364–1367.

    Article  Google Scholar 

Download references

Funding

This research does not have any financial support. The authors are with the Faculty of Engineering at the Ferdowsi University of Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghosheh Abed Hodtani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies of the others.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 1

An informal proof of this theorem is a straightforward algebra extension of [5, 19], and [20] with some differences caused by known fading coefficients. The coding scheme used to achieve this capacity is similar to the one used in [15, 19, 20]. The coding scheme and error probability analysis is straightforward and is not shown here due to a lack of space. We use definitions in Corollary 1 And 2 to compute the capacity of WC with knowing SI at the transmitter and fading coefficients. We have following assumptions:

$$ E\left[ {X^{2} } \right] = P, E\left[ {S^{2} } \right] = Q, E\left[ {\eta_{m}^{2} } \right] = N_{m} , E\left[ {\eta_{e}^{2} } \right] = N_{e} , $$
(13)

and \({U}_{m}\) and \({U}_{e}\) are generated by using generalized dirty paper coding presented in [23]. According to [5, 19, 20, 23] and knowing that \({Y}_{m}={h}_{m}X+{h}_{sm}S+{\eta }_{m}\), \({Y}_{e}={h}_{e}X+{h}_{sm}S+{\eta }_{e}\) we can write mutual information related to the term \({C}_{m}\) in corollary 1 as follows:

$$ \begin{aligned} I\left( {U_{m} ;Y_{m} } \right) & = H\left( {h_{m} X + h_{sm} S + \eta_{m} } \right) - H\left( {h_{m} X + h_{sm} S + \eta_{m} \left| {X + \alpha_{m} S} \right.} \right) \\ & = H\left( {h_{m} X + h_{sm} S + \eta_{m} } \right) + H\left( {X + \alpha_{m} S} \right) - H\left( {h_{m} X + h_{sm} S + \eta_{m} ,X + \alpha_{m} S} \right) \\ & = \log \left( {\left( {2\pi e} \right)^{2} \left( {\left| {h_{m} } \right|^{2} P + \left| {h_{sm} } \right|^{2} Q + N_{m} } \right)\left( {P + \alpha_{m}^{2} Q} \right)} \right) - \\ & \quad \log \left( {\left( {2\pi e} \right)^{2} \det \left( {cov\left( {h_{m} X + h_{sm} S + \eta_{m} ,X + \alpha_{m} S} \right)} \right)} \right) \\ & = \log \left( {\frac{{\left( {\left| {h_{m} } \right|^{2} P + \left| {h_{sm} } \right|^{2} Q + N_{m} } \right)\left( {P + \alpha_{m}^{2} Q} \right)}}{{PQ\left( {\left| {h_{sm} } \right| - \alpha_{m} \left| {h_{m} } \right|} \right)^{2} + N_{m} \left( {P + \alpha_{m}^{2} Q} \right)}}} \right), \\ \end{aligned} $$
(14)

and

$$ I\left( {U_{m} ;S} \right) = \log \left( {\frac{{P + \alpha_{m}^{2} Q}}{P}} \right). $$
(15)

Substituting (14) and (15) in \({C}_{m}\) with corollary 1, we obtain:

$$ C_{m} \left( {\alpha_{m} } \right) = \log \left( {\frac{{P\left( {\left| {h_{m} } \right|^{2} P + \left| {h_{sm} } \right|^{2} Q + N_{m} } \right)}}{{PQ\left( {\left| {h_{sm} } \right| - \alpha_{m} \left| {h_{m} } \right|} \right)^{2} + N_{m} \left( {P + \alpha_{m}^{2} Q} \right)}}} \right). $$
(16)

By maximizing \({C}_{m}\left({\alpha }_{m}\right)\) over \({\alpha }_{m}\), for corollary 1, we get

$$ C_{s} = \mathop {\max }\limits_{{\alpha_{m} }} C_{m} \left( {\alpha_{m} } \right) = \log \left( {1 + \frac{{\left| {h_{m} } \right|^{2} P}}{{N_{m} }}} \right) = \log \left( {1 + \gamma_{m} } \right). $$
(17)

So we have (9) for corollary 1. The proof of this theorem for corollary 2 is similar with negligible change and is omitted for the lack of space.

Appendix B

Proof of Theorem 2

First, we state some integrals that are needed to prove the theorems [26]. Therefore, we have.

$$ \smallint e^{ - \xi t} \log \left( {1 + \beta t} \right)dt = \frac{1}{\xi }\left[ {e^{{\frac{\xi }{\beta }}} Ei\left( { - \left( {\xi t + \frac{\xi }{\beta }} \right)} \right) - e^{ - \xi t} \log \left( {1 + \beta t} \right)} \right], $$
(18)
$$ \mathop \smallint \limits_{0}^{\infty } e^{ - \xi t} \log \left( {1 + \beta t} \right)dt = - \frac{{e^{{\frac{\xi }{\beta }}} }}{\xi }Ei\left( { - \frac{\xi }{\beta }} \right), $$
(19)
$$ \smallint e^{ - \nu t} Ei\left( { - \left( {\delta + \kappa t} \right)} \right)dt = \frac{1}{\nu }\left[ {e^{{\frac{\nu \delta }{\kappa }}} Ei\left( { - \frac{{\left( {\nu + \kappa } \right)\left( {\kappa t + \delta } \right)}}{k}} \right) - e^{vt} Ei\left( { - \left( {\kappa t + \delta } \right)} \right)} \right], $$
(20)
$$ \mathop \smallint \limits_{0}^{\infty } e^{ - \nu t} Ei\left( { - \left( {\delta + \kappa t} \right)} \right)dt = \frac{1}{\nu }\left[ {Ei\left( { - \delta } \right) - e^{{\frac{\nu \delta }{\kappa }}} Ei\left( { - \frac{{\left( {\nu + \kappa } \right)\delta }}{k}} \right)} \right], $$
(21)

where \(Ei\left(x\right)=-\underset{x}{\overset{\infty }{\int }}{t}^{-1}{e}^{-t}dt\). Also, \(Ei\left(-x\right)\) was approximated in [27] as follows:

$$ Ei\left( { - x} \right) = - 4\sqrt 2 a_{N} a_{I} \mathop \sum \limits_{n = 1}^{N + 1} \mathop \sum \limits_{i = 1}^{I + 1} \sqrt {b_{n} } e^{{ - 4b_{n} b_{i} x}} , $$
(22)

where \({\theta }_{0}=0<{\theta }_{1}<\dots <{\theta }_{N+1}=\frac{\pi }{2}\), \({a}_{N}=\frac{{\theta }_{n}-{\theta }_{n-1}}{\pi }\), \({b}_{n}=\frac{\mathrm{cos}\left({\theta }_{n-1}\right)-\mathrm{cos}({\theta }_{n})}{2({\theta }_{n}-{\theta }_{n-1})}\), and for \(N=I=1\) we have: \({a}_{N}={a}_{I}=\frac{1}{4}\), \({b}_{1}=\infty \) and \({b}_{2}=\frac{2}{\pi }\). Thus, \(Ei\left(-x\right)\) can be approximated as

$$ Ei\left( { - x} \right)\sim - \frac{\sqrt \pi }{2}e^{{ - \left( {\frac{16}{{\pi^{2} }}} \right)x}} . $$
(23)

For Corollary 1 First, we compute the distance \({d}_{m}\) between transmitter and legitimate receiver to ensure reliable transmission. Due to the secrecy outage probability definition, the reliable transmission between transmitter and legitimate receiver happens, when legitimate receiver can decode the confidential messages (i.e., \({C}_{m}>{R}_{s}\)) or

$$ R_{s} \le E_{{\gamma_{m} }} \left[ {\log \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}} \right)} \right] = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} }}{{\overline{{\gamma_{m} }} }}\log \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}} \right)d\gamma_{m} , $$
(24)

where by computing the above integral and substituting (23) into (24), the distance \({d}_{m}\) between transmitter and legitimate receiver for reliable transmission is obtained as below:

$$ d_{m} \le \left( {\frac{{\pi^{2} \overline{{\gamma_{m} }} }}{{\pi^{2} - 16}}\ln \left( {\frac{{2R_{s} }}{\sqrt \pi }} \right)} \right)^{{\frac{1}{\alpha }}} . $$
(25)

In this case we don’t have any limitation over \({d}_{e}\).

For Corollary 2 The distance \({d}_{m}\) for reliable transmission is obtained similar to (25). Now, using the derived distance \({d}_{m}\) between transmitter and legitimate receiver, we can find the SCR for secure transmission from definition (15) as follows

$$ R_{s} \le C_{s} \left( {d_{m} ,d_{e} } \right) = E_{{\gamma_{s} ,\gamma_{e} ,\gamma_{m} }} \left[ {\frac{{\log \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }} + \gamma_{sm} } \right)}}{{\log \left( {1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }} + \gamma_{se} } \right)}}} \right] = D_{1} - D_{2} . $$
(26)

We have

$$ D_{1} = \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{{\gamma_{m} }} \mathop \smallint \limits_{0}^{\infty } \log \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }} + \overline{{\gamma_{sm} }} } \right)\frac{1}{{\overline{{\gamma_{sm} }} }}e^{{ - \frac{{\gamma_{sm} }}{{\overline{{\gamma_{sm} }} }}}} \frac{1}{{\overline{{\gamma_{m} }} }}e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} \frac{1}{{\overline{{\gamma_{e} }} }}e^{{ - \frac{{\gamma_{e} }}{{\overline{{\gamma_{e} }} }}}} d\gamma_{sm} d\gamma_{e} d\gamma_{m} , $$
(27)

and

$$ D_{2} = \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{{\gamma_{m} }} \mathop \smallint \limits_{0}^{\infty } \log \left( {1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }} + \gamma_{se} } \right)\frac{1}{{\overline{{\gamma_{se} }} }}e^{{ - \frac{{\gamma_{se} }}{{\overline{{\gamma_{se} }} }}}} \frac{1}{{\overline{{\gamma_{m} }} }}e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} \frac{1}{{\overline{{\gamma_{e} }} }}e^{{ - \frac{{\gamma_{e} }}{{\overline{{\gamma_{e} }} }}}} d\gamma_{se} d\gamma_{e} d\gamma_{m} . $$
(28)

After some simplifications and by utilizing linear formulas of integration, for \({D}_{1}\), we receive to

$$ D_{1} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} }}{{\overline{{\gamma_{sm} }} .\overline{{\gamma_{e} }} .\overline{{\gamma_{m} }} }}(D_{1}^{^{\prime\prime}} )d\gamma_{m} , $$
(29)

where \({D}_{1}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}={\int }_{0}^{{\gamma }_{m}}{e}^{-\frac{{\gamma }_{e}}{\overline{{\gamma }_{e}}}}{D}_{1}\mathrm{^{\prime}}d{\gamma }_{e}\) and \({D}_{1}^{\mathrm{^{\prime}}}={\int }_{0}^{\infty }\mathrm{log}(1+\frac{{\gamma }_{m}}{{d}_{m}^{\alpha }}+{\gamma }_{sm}){e}^{-\frac{{\gamma }_{sm}}{\overline{{\gamma }_{sm}}}}d{\gamma }_{sm}=\overline{{\gamma }_{sm}}(\mathrm{ln}\left(1+\frac{{\gamma }_{m}}{{d}_{m}^{\alpha }}\right)+{e}^{\frac{1+\frac{{\gamma }_{m}}{{d}_{m}^{\alpha }}}{\overline{{\gamma }_{sm}}}}{E}_{1}(\frac{1+\frac{{\gamma }_{m}}{{d}_{m}^{\alpha }}}{\overline{{\gamma }_{sm}}})).\) So, we have

$$ D_{1}^{^{\prime\prime}} = j_{1} ^{\prime} + j_{2} ^{\prime}, $$
(30)

where

$$ j_{1}^{^{\prime}} = \mathop \smallint \limits_{0}^{{\gamma_{m} }} \overline{{\gamma_{sm} }} e^{{ - \frac{{\gamma_{e} }}{{\overline{{\gamma_{e} }} }}}} \ln \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}} \right)d\gamma_{e} = \overline{{\gamma_{sm} }} \overline{{\gamma_{e} }} \ln \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}} \right)\left( {1 - e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{e} }} }}}} } \right), $$
(31)

and

$$ j_{2}^{^{\prime}} = \mathop \smallint \limits_{0}^{{\gamma_{m} }} \overline{{\gamma_{sm} }} e^{{ - \frac{{\gamma_{e} }}{{\overline{{\gamma_{e} }} }}}} e^{{\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}}} E_{1} \left( {\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}} \right)d\gamma_{e} = \overline{{\gamma_{sm} }} \overline{{\gamma_{e} }} \left( {1 - e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{e} }} }}}} } \right)e^{{\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}}} E_{1} \left( {\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}} \right). $$
(32)

Thus, by replacing (31) and (32) in (30) and then (29), we have

$$ D_{1} = k_{1}^{^{\prime}} - k_{2}^{^{\prime}} + k_{3}^{^{\prime}} - k_{4}^{^{\prime}} , $$
(33)

where by exploiting (19) and (21), we have

$$ k_{1}^{^{\prime}} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} }}{{\overline{{\gamma_{m} }} }}\ln \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}} \right)d\gamma_{m} = - e^{{\frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }}}} Ei\left( { - \frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }}} \right), $$
(34)
$$ k_{2} ^{\prime} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \gamma_{m} \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)}} }}{{\overline{{\gamma_{m} }} }}\ln \left( {1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}} \right)d\gamma_{m} = - \frac{{\overline{{\gamma_{e} }} .e^{{d_{m}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)}} }}{{\overline{{\gamma_{m} }} + \overline{{\gamma_{e} }} }}Ei\left( { - d_{m}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)} \right), $$
(35)
$$ k_{3}^{^{\prime}} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}}} }}{{\overline{{\gamma_{m} }} }}E_{1} \left( {\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}} \right)d\gamma_{m} = \frac{{ - e^{{\frac{1}{{\overline{{\gamma_{sm} }} }}}} \left( {Ei\left( {\frac{ - 1}{{\overline{{\gamma_{sm} }} }}} \right) - e^{{\frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{sm} }} }}}} Ei\left( {\frac{{ - d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }}} \right)} \right)}}{{\overline{{\gamma_{m} }} \left( {\frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{sm} }} d_{m}^{\alpha } }}} \right)}}, $$
(36)
$$ \begin{aligned} k_{4}^{^{\prime}} & = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \gamma_{m} \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)}} e^{{\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}}} }}{{\overline{{\gamma_{m} }} }}E_{1} \left( {\frac{{1 + \frac{{\gamma_{m} }}{{d_{m}^{\alpha } }}}}{{\overline{{\gamma_{sm} }} }}} \right)d\gamma_{m} \\ & = \frac{{e^{{\frac{1}{{\overline{{\gamma_{sm} }} }}}} \left[ {Ei\left( {\frac{ - 1}{{\overline{{\gamma_{sm} }} }}} \right) - e^{{\frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }} + \frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{sm} }} }}}} Ei\left( { - \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)d_{m}^{\alpha } } \right)} \right]}}{{\frac{1}{{\overline{{\gamma_{sm} }} d_{m}^{\alpha } }} - \frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{e} }} }}}}. \\ \end{aligned} $$
(37)

Similarly, for \({D}_{2}\), we have

$$ D_{2} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} }}{{\overline{{\gamma_{se} }} .\overline{{\gamma_{e} }} .\overline{{\gamma_{m} }} }}(D_{2}^{^{\prime\prime}} )d\gamma_{m} . $$
(38)

where \({D}_{2}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}={\int }_{0}^{{\gamma }_{m}}{e}^{-\frac{{\gamma }_{e}}{\overline{{\gamma }_{e}}}}({D}_{2}\mathrm{^{\prime}})d{\gamma }_{e}\) and \({D}_{2}\mathrm{^{\prime}}={\int }_{0}^{\infty }\mathrm{log}(1+\frac{{\gamma }_{e}}{{d}_{e}^{\alpha }}+{\gamma }_{se}){e}^{-\frac{{\gamma }_{se}}{\overline{{\gamma }_{se}}}}d{\gamma }_{se}=\overline{{\gamma }_{se}}(\mathrm{ln}\left(1+\frac{{\gamma }_{e}}{{d}_{e}^{\alpha }}\right)+{e}^{\frac{1+\frac{{\gamma }_{e}}{{d}_{e}^{\alpha }}}{\overline{{\gamma }_{se}}}}{E}_{1}(\frac{1+\frac{{\gamma }_{e}}{{d}_{e}^{\alpha }}}{\overline{{\gamma }_{se}}})).\) So, we have

$$ D_{2}^{^{\prime\prime}} = i_{1} ^{\prime} + i_{2} ^{\prime}, $$
(39)

where by exploiting (18) and (20), we have

$$ \begin{aligned} i_{1}^{^{\prime}} & = \mathop \smallint \limits_{0}^{{\gamma_{m} }} \overline{{\gamma_{se} }} e^{{ - \frac{{\gamma_{e} }}{{\overline{{\gamma_{e} }} }}}} \ln \left( {1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }}} \right)d\gamma_{e} \\ & = \overline{{\gamma_{se} }} \overline{{\gamma_{e} }} \left[ {e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} Ei\left( { - \frac{{d_{e}^{\alpha } + \gamma_{m} }}{{\overline{{\gamma_{e} }} }}} \right) - e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{e} }} }}}} \ln \left( {1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }}} \right) - e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} Ei\left( {\frac{{ - d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right)} \right], \\ \end{aligned} $$
(40)
$$ \begin{aligned} i_{2} ^{\prime} = & \mathop \smallint \limits_{0}^{{\gamma_{m} }} \overline{{\gamma_{se} }} e^{{ - \frac{{\gamma_{e} }}{{\overline{{\gamma_{e} }} }}}} e^{{\frac{{1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }}}}{{\overline{{\gamma_{se} }} }}}} E_{1} \left( {\frac{{1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }}}}{{\overline{{\gamma_{se} }} }}} \right)d\gamma_{e} = - \frac{{\overline{{\gamma_{se} }} e^{{\frac{1}{{\overline{{\gamma_{se} }} }}}} }}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}} .[e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} }}}} Ei\left( { - \frac{{\gamma_{m} + d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right) \\ & - e^{{\gamma_{m} \left( {\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}} \right)}} Ei\left( { - \frac{{1 + \frac{{\gamma_{m} }}{{d_{e}^{\alpha } }}}}{{\overline{{\gamma_{se} }} }}} \right) - e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} }}}} Ei\left( { - \frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right) + Ei\left( { - \frac{1}{{\overline{{\gamma_{se} }} }}} \right)]. \\ \end{aligned} $$
(41)

Thus, by replacing (40) and (41) in (39) and then (38), we have

$$ D_{2} = d_{1} ^{\prime} - d_{2} ^{\prime} - d_{3} ^{\prime} - d_{4} ^{\prime} + d_{5} ^{\prime} + d_{6} ^{\prime} - d_{7} .^{\prime} $$
(42)

where by exploiting (19) and (21), we have

$$ d_{1}^{^{\prime}} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} }}{{\overline{{\gamma_{m} }} }}Ei\left( { - \frac{{d_{e}^{\alpha } + \gamma_{m} }}{{\overline{{\gamma_{e} }} }}} \right)d\gamma_{m} = e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} \left[ {Ei\left( { - \frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right) - e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{m} }} }}}} Ei\left( { - \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)d_{e}^{\alpha } } \right)} \right], $$
(43)
$$ d_{2} ^{\prime} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{e} }} }}}} }}{{\overline{{\gamma_{m} }} }}\ln \left( {1 + \frac{{\gamma_{e} }}{{d_{e}^{\alpha } }}} \right)d\gamma_{m} = - \frac{{\overline{{\gamma_{e} }} }}{{\overline{{\gamma_{m} }} + \overline{{\gamma_{e} }} }}e^{{d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)}} Ei\left( { - d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)} \right), $$
(44)
$$ d_{3}^{^{\prime}} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} }}{{\overline{{\gamma_{m} }} }}Ei\left( {\frac{{ - d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right)d\gamma_{m} = e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} Ei\left( {\frac{{ - d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right), $$
(45)
$$ \begin{aligned} d_{4}^{^{\prime}} & = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} }}{{\overline{{\gamma_{e} }} .\overline{{\gamma_{m} }} }}\left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)Ei\left( { - \frac{{\gamma_{m} + d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right)d\gamma_{m} \\ & = e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} \left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)\left( {Ei\left( { - \frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right) - e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} Ei\left( { - d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)} \right)} \right), \\ \end{aligned} $$
(46)
$$ \begin{aligned} d_{5}^{^{\prime}} & = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{1}{{\overline{{\gamma_{se} }} }}}} }}{{\overline{{\gamma_{e} }} .\overline{{\gamma_{m} }} }}\left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)e^{{\gamma_{m} \left( {\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}} \right)}} Ei\left( { - \frac{{1 + \frac{{\gamma_{m} }}{{d_{e}^{\alpha } }}}}{{\overline{{\gamma_{se} }} }}} \right)d\gamma_{m} \\ & = \frac{1}{{\overline{{\gamma_{e} }} \overline{{\gamma_{m} }} }}e^{{\frac{1}{{\overline{{\gamma_{se} }} }}}} \left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}\frac{1}{{\frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{e} }} }} + \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)\left[ {Ei\left( { - \frac{1}{{\overline{{\gamma_{se} }} }}} \right) - e^{{\left( {d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{e} }} }} + \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}} \right)} \right)}} Ei\left( { - d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{e} }} }} + \frac{2}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}} \right)} \right)} \right], \\ \end{aligned} $$
(47)
$$ d_{6}^{^{\prime}} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{1}{{\overline{{\gamma_{se} }} }}}} }}{{\overline{{\gamma_{e} }} \overline{{\gamma_{m} }} }}\left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} }}}} Ei\left( { - \frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right)d\gamma_{m} = \frac{1}{{\overline{{\gamma_{e} }} }}\left( {\frac{{e^{{\frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}}} Ei\left( { - \frac{{d_{e}^{\alpha } }}{{\overline{{\gamma_{e} }} }}} \right)}}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right), $$
(48)
$$ d_{7}^{^{\prime}} = \mathop \smallint \limits_{0}^{\infty } \frac{{e^{{ - \frac{{\gamma_{m} }}{{\overline{{\gamma_{m} }} }}}} e^{{\frac{{N_{e} }}{{\overline{{\gamma_{s} }} }}}} }}{{\overline{{\gamma_{e} }} .\overline{{\gamma_{m} }} }}\left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)Ei\left( { - \frac{1}{{\overline{{\gamma_{se} }} }}} \right)d\gamma_{m} = \frac{1}{{\overline{{\gamma_{e} }} }}\left( {\frac{1}{{\frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)e^{{\frac{1}{{\overline{{\gamma_{se} }} }}}} Ei\left( { - \frac{1}{{\overline{{\gamma_{se} }} }}} \right). $$
(49)

Therefore, from (26), we have

$$ \begin{aligned} R_{s} \le & k_{1}^{^{\prime}} - k_{2}^{^{\prime}} + k_{3}^{^{\prime}} - k_{4}^{^{\prime}} - d_{1}^{^{\prime}} - d_{2}^{^{\prime}} - d_{3}^{^{\prime}} - d_{4}^{^{\prime}} + d_{5}^{^{\prime}} + d_{6}^{^{\prime}} - d_{7}^{^{\prime}} \\ & = \frac{{\overline{{\gamma_{m} }} e^{{\frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }}}} }}{{\overline{{\gamma_{sm} }} d_{m}^{\alpha } - \overline{{\gamma_{m} }} }}Ei\left( { - \frac{{d_{m}^{\alpha } }}{{\overline{{\gamma_{m} }} }}} \right) - \left( {\frac{1}{{1 - \frac{{\overline{{\gamma_{m} }} }}{{\overline{{\gamma_{sm} }} d_{m}^{\alpha } }}}} - \frac{1}{{\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{sm} }} d_{m}^{\alpha } }}}}} \right)e^{{\frac{1}{{\overline{{\gamma_{sm} }} }}}} Ei\left( {\frac{ - 1}{{\overline{{\gamma_{sm} }} }}} \right) + (\frac{{\overline{{\gamma_{e} }} }}{{\overline{{\gamma_{m} }} + \overline{{\gamma_{e} }} }} \\ & - \frac{1}{{\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }} - \frac{1}{{\overline{{\gamma_{sm} }} d_{m}^{\alpha } }}}})e^{{d_{m}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)}} Ei\left( { - d_{m}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)} \right) + \left( {\frac{1}{{1 - \frac{{\overline{{\gamma_{e} }} }}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)(1 - \frac{1}{{1 - \frac{{\overline{{\gamma_{m} }} }}{{\overline{{\gamma_{e} }} }} + \frac{{\overline{{\gamma_{m} }} }}{{\overline{{\gamma_{sm} }} d_{e}^{\alpha } }}}})e^{{\frac{1}{{\overline{{\gamma_{se} }} }}}} \\ & \cdot Ei\left( { - \frac{1}{{\overline{{\gamma_{se} }} }}} \right) + \left( {\frac{{\overline{{\gamma_{m} }} }}{{\overline{{\gamma_{m} }} + \overline{{\gamma_{e} }} }} - \frac{1}{{1 - \frac{{\overline{{\gamma_{e} }} }}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)e^{{d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)}} Ei\left( { - d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} + \frac{1}{{\overline{{\gamma_{e} }} }}} \right)} \right) \\ & + \left( {\frac{1}{{1 - \frac{{\overline{{\gamma_{e} }} }}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right) \left( {\frac{1}{{1 - \frac{{\overline{{\gamma_{m} }} }}{{\overline{{\gamma_{e} }} }} + \frac{{\overline{{\gamma_{m} }} }}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}}}} \right)e^{{d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{e} }} }} + \frac{2}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}} \right)}} .Ei\left( { - d_{e}^{\alpha } \left( {\frac{1}{{\overline{{\gamma_{m} }} }} - \frac{1}{{\overline{{\gamma_{e} }} }} + \frac{2}{{\overline{{\gamma_{se} }} d_{e}^{\alpha } }}} \right)} \right). \\ \end{aligned} $$
(50)

Now, by considering the obtained approximation in (23), the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakravan, S., Hodtani, G.A. Analysis of Side Information Impact on the Coverage Region of Wireless Wiretap Channel. Wireless Pers Commun 126, 3253–3268 (2022). https://doi.org/10.1007/s11277-022-09862-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09862-0

Keywords

Navigation