Skip to main content
Log in

A Differential LNA Architecture with Improved Figure of Merit Using 40 nm UMC CMOS Technology for mmWave Band Receiver Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

High performing low noise amplifier at millimeter wave (mm-wave) frequencies should have high gain, high linearity, low noise figure, low power and high reverse isolation. Realizing such performance has been a challenging task for researchers due to tradeoff among design parameters. With the increase in operating frequency this tradeoff has become even more significant. Therefore, a consolidated analysis of performance parameters in terms of Figure of Merit (FOM) is essential for designing a better LNA. In this paper, a 3-stage balun-less differential-ended LNA has been proposed, which utilizes the benefits of cascode topology incorporating CMOS push–pull technique. The proposed LNA provides better performance in terms of linearity, reverse isolation and Noise Figure, that results in improved FOM value. The proposed design exhibits gain of 25.5 dB with NF 1.46 dB, input reflection coefficient of − 15.8 dB and IIP3 of − 11.6 dBm resulting in FOM value of 78.29 with unconditional stability. Therefore, the proposed LNA is suggested as a potential candidate for applications employing mm-wave frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

There is no associated data available for this work.

References

  1. Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.

    Article  Google Scholar 

  2. Li, Q. C., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.

    Article  Google Scholar 

  3. Luo, J., He, J., Wang, H., Chang, S., Huang, Q., & Yu, X. P. (2018). A 28 GHz LNA using defected ground structure for 5G application. Microwave and Optical Technology Letters, 60(5), 1067–1072.

    Article  Google Scholar 

  4. Geliang, Y., Zhigong, W., Zhiqun, L., Qin, L., Zhu, L., & Faen, L. (2012). A 31.7-GHz high linearity millimeter-wave CMOS LNA using an ultra-wideband input matching technique. Journal of Semiconductors, 33(12), 125011.

    Article  Google Scholar 

  5. Hedayati, M. K., Abdipour, A., Shirazi, R. S., Cetintepe, C., & Staszewski, R. B. (2018). A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(10), 1460–1464.

    Google Scholar 

  6. Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional, 19(1), 12–20.

    Article  Google Scholar 

  7. Chauhan, V., & Floyd, B. (2018, May). A 24–44 GHz UWB LNA for 5G Cellular Frequency Bands. In 2018 11th Global Symposium on Millimeter Waves (GSMM) (pp. 1–3). IEEE.

  8. Li, X. J., & Zhang, Y. P. (2018). CMOS Low noise amplifier design for microwave and mmWave applications. Progress In Electromagnetics Research, 161, 57–85.

    Article  Google Scholar 

  9. Razavi, B. (1998). RF microelectronics. Prentice Hall PTR.

    Google Scholar 

  10. Božanić, M., & Sinha, S. (2018). General low-noise amplifiers. millimeter-wave low noise amplifiers. Delhi: Springer.

    Book  Google Scholar 

  11. Manjula, S., & Selvathi, D. (2013). Design of low power 2.4 GHz CMOS cascode LNA with reduced noise figure for WSN applications. Wireless personal communications, 70(4), 1965–1976.

    Article  Google Scholar 

  12. Kundu, S., & Paramesh, J. (2015). A Transformer-neutralized 0.6 V VDD 17–29 GHz LNA and its application to an RF front-end. Analog Integrated Circuits and Signal Processing, 83(2), 173–186.

    Article  Google Scholar 

  13. Zhang, H., & Sánchez-Sinencio, E. (2010). Linearization techniques for CMOS low noise amplifiers: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(1), 22–36.

    Article  MathSciNet  Google Scholar 

  14. Nouri, M., & Karimi, G. (2014). A Novel 2.5–3.1 GHz Wide-Band Low-Noise Amplifier in 0.18μm CMOS. Wireless Personal Communications, 79(3), 1993–2003.

    Article  Google Scholar 

  15. Karrari, H., Aghdam, E. N., & Baghtash, H. F. (2018). A wide-band noise-cancelling direct-conversion balun-LNA-mixer front-end. Analog Integrated Circuits and Signal Processing, 96(1), 67–78.

    Article  Google Scholar 

  16. Nam, I., Kim, B., & Lee, K. (2005). CMOS RF amplifier and mixer circuits utilizing complementary characteristics of parallel combined NMOS and PMOS devices. IEEE Transactions on Microwave Theory and Techniques, 53(5), 1662–1671.

    Article  Google Scholar 

  17. Hadipour, K., & Nabavi, A. (2010). Highly linear mm-wave CMOS low noise amplifier. IEICE Electronics Express, 7(1), 20–26.

    Article  Google Scholar 

  18. Sakurai, T., & Richard Newton, A. (1990). Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of solid-state circuits, 25(2), 584–594.

    Article  Google Scholar 

  19. Wambacq, P., & Sansen, W. M. (2013). Distortion analysis of analog integrated circuits. Springer.

    Google Scholar 

  20. Ramzan, R., Zafar, F., Arshad, S., & Wahab, Q. (2012). Figure of merit for narrowband, wideband and multiband LNAs. International Journal of Electronics, 99(11), 1603–1610.

    Article  Google Scholar 

  21. Verma, A., et al. (2021). A 36.7 mW, 28 GHz receiver frontend using 40 nm RFCMOS technology with improved Figure of Merit. Analog Integrated Circuits and Signal Processing, 107.1, 135–144.

    Article  Google Scholar 

  22. Rashtian, H., Mirabbasi, S., Taris, T., Deval, Y., & Begueret, J. B. (2012). A 4-stage 60-GHz low-noise amplifier in 65-nm CMOS with body biasing to control gain, linearity, and input matching. Analog Integrated Circuits and Signal Processing, 73(3), 757–768.

    Article  Google Scholar 

  23. Kanar, T., & Rebeiz, G. M. (2013, October). A 16–24 GHz CMOS SOI LNA with 2.2 dB mean noise figure. In 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (pp. 1–4). IEEE.

  24. Chiu, Y. T., Lin, Y. S., & Chang, J. F. (2010, May). A 18.85 mW 20–29 GHz wideband CMOS LNA with 3.85±0.25 dB NF and 18.1±1.9 dB gain. In 2010 IEEE MTT-S International Microwave Symposium (pp. 381–384). IEEE.

  25. Kumar, S., Kanaujia, B. K., Dwari, S., Pandey, G. P., & Singh, D. K. (2015). A Miniaturization approach towards 40áGHz integrated single chip receiver system for MMW communication networks. Wireless Personal Communications, 84(2), 1285–1302.

    Article  Google Scholar 

  26. Cui, B., & Long, J. R. (2020). A 1.7-dB minimum NF, 22–32-GHz low-noise feedback amplifier with multistage noise matching in 22-nm FD-SOI CMOS. IEEE Journal of Solid-State Circuits, 55(5), 1239–1248.

    Article  Google Scholar 

  27. Shaheen, R. A., Timo, R., & Aarno, P. (2020). Design of a 40 GHz low noise amplifier using multigate technique for cascode devices. Analog Integrated Circuits and Signal Processing, 105(3), 347–357.

    Article  Google Scholar 

  28. Kalra, D., Goyal, V., & Srivastava, M. (2021). Design and performance analysis of low power LNA with variable gain current reuse technique. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-021-01855-6

    Article  Google Scholar 

  29. Sebastian, N., Chavva S., & Immanuel, R., (2021). "A 3.55 dB NF Ultra-Compact Noise-Optimized LNA for 5G mm-Wave Bands in 65nm CMOS." In 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID), pp. 71–75. IEEE, 2021.

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Yadav, P.K., Goswami, M. et al. A Differential LNA Architecture with Improved Figure of Merit Using 40 nm UMC CMOS Technology for mmWave Band Receiver Applications. Wireless Pers Commun 124, 783–799 (2022). https://doi.org/10.1007/s11277-021-09383-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09383-2

Keywords

Navigation