Skip to main content
Log in

FBDR-Fuzzy Based DDoS Attack Detection and Recovery Mechanism for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSN) is considered as one of the exploring technology for its deployment of the massive number of dedicated sensor nodes which sense the environment and collect the data. The collected data are sent to the sink node through the intermediate nodes. Since the sensors node data are exposed to the internet, there is a possibility of vulnerability in the WSN. The common attack that affects most of the sensor nodes is the Distributed Denial of Services (DDoS) attack. This paper aims to identify the DDoS (Flooding) attack quickly and to recover the data of sensor nodes using the fuzzy logic mechanism. Fuzzy based DDoS attack Detection and Recovery mechanism (FBDR) uses type 1 fuzzy logic to detect the occurrence of DDoS attack in a node. Similarly fuzzy- type 2 is used for the recovery of data from the DDoS attack. Both the type 1 fuzzy-based rule and type 2 fuzzy-based rule perform well in terms of identifying the DDoS attack and recover the data under attack. It also helps to reduce the energy consumption of each node and improves the lifetime of the network. The proposed FBDR scheme is also compared with other related existing schemes. The proposed method saves energy usage by up to 20% compared with the related schemes. The experimental results represent that the FBDR method works better than other similar schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Patil, S., & Chaudhari, S. (2016). DoS attack prevention technique in wireless sensor networks. In 7th international conference on communication, computing and virtualization. Procedia Computer Science 79 (pp. 715–721). https://doi.org/10.1016/j.procs.2016.03.094.

  2. Gavrić, Ž, & Simić, D. (2018). Overview of DOS attacks on wireless sensor networks and experimental results for simulation of interference attacks. Ingeniería e Investigación, 38(1), 130–138. https://doi.org/10.15446/ing.investig.v38n1.65453

    Article  Google Scholar 

  3. Farsi, M., Elhosseini, M. A., Badawy, M., Arafat Ali, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954. https://doi.org/10.1109/ACCESS.2019.2902072

    Article  Google Scholar 

  4. Kaur, A., & Kaur, M. (2016). Performance of node deployment techniques in WSN: A review. IJSRD - International Journal for Scientific Research & Development., 4(02), 2321–613.

    Google Scholar 

  5. Kaur, T., Saluja, K. K., & Sharma, A. K. (2016). DDoS attack in WSN: A survey. In International conference on recent advances and innovations in engineering (pp.1–5). https://doi.org/10.1109/ICRAIE39140.2016.

  6. Shahzad, F., Pasha, M., & Ahmad, A. (2017). A survey of active attacks on wireless sensor networks and their counter measures. International Journal of Computer Science and Information Security, 14(12), 54–65.

    Google Scholar 

  7. Upadhyay, R., Bhatt, U. R., & Tripathi, H. (2016). DDOS attack aware DSR routing protocol in WSN. In International conference on information security & privacy (ICISP2015) (Vol.78, pp. 68–74). https://doi.org/10.1016/j.procs.2016.02.012.

  8. Sachdeva, M., Singh, G., Kumar, K., & Singh, K. (2010). DDoS incidents and their impact: A review. The International Arab Journal of Information Technology, 7(1), 14–20.

    Google Scholar 

  9. Douligeris, C., & Mitrokotsa, A. (2004). DDoS attacks and defence mechanisms: classification and state-of-the-art. Computer Networks, 44, 643–666. https://doi.org/10.1016/j.comnet.2003.10.003

    Article  Google Scholar 

  10. Mirkovic, J., Martin, J., & Reiher, P. (2003). A taxonomy of DDoS attacks and DDoS defense mechanisms. ACM SIGCOMM Computer Communications Review. https://doi.org/10.1145/997150.997156

    Article  Google Scholar 

  11. Xia, Z., Lu, S., Li, J., & Tang, J. (2010). Enhancing DDoS flood attack detection via intelligent fuzzy logic. Informatica (Slovenia), 34, 497–507.

    Google Scholar 

  12. Alcala-Fdez, J., & Alonso, J. M. (2016). A survey of fuzzy systems software: Taxonomy. Current Research Trends and Prospects, IEEE Transactions on Fuzzy Systems, 24(1), 40–56. https://doi.org/10.1109/TFUZZ.2015.2426212

    Article  Google Scholar 

  13. Jiangtao, W., & Geng, Y. (2008). An intelligent method for real-time detection Of DDoS attack based on fuzzy logic. Journal of Electronics, 25, 511–518. https://doi.org/10.1007/s11767-007-0056-6

    Article  Google Scholar 

  14. Iyengar, N. Ch. S. N., Banerjee, A., & Ganapathy, G. (2014). A fuzzy logic-based defense mechanism against distributed denial of service attack in cloud computing environment. International Journal of Communication Networks and Information Security (IJCNIS), 6, (3).

  15. Li, Q., Meng, L., Zhang, Y., & Yan, J. (2019). DDoS attacks detection using machine learning algorithms, digital TV and multimedia communication. Communications in Computer and Information Science. Springer, Singapore, 1009 (pp. 205–216). https://doi.org/10.1007/978-981-13-8138-6_17.

  16. He, Z., Zhang, T., Lee, R. B. (2017). Machine learning based DDoS attack detection from source side in cloud. In 2017 IEEE 4th international conference on cyber security and cloud computing (CSCloud), New York, NY (pp. 114–120). https://doi.org/10.1109/CSCloud.2017.58.

  17. Khare, A. K., Rana, J. L., & Jain, R. C. (2017). Detection of wormhole, blackhole and DDOS attack in MANET using trust estimation under fuzzy logic methodology. International Journal of Computer Network and Information Security, 9, 29–35. https://doi.org/10.5815/ijcnis.2017.07.04

    Article  Google Scholar 

  18. Balarengadurai, C., & Saraswathi, S. (2013). Fuzzy based detection and prediction of DDoS attacks in IEEE 802.15.4 low rate wireless personal area network. IJCSI International Journal of Computer Science Issues, 10(6), 1. https://doi.org/10.1504/IJTMCC.2013.056424

    Article  Google Scholar 

  19. Tabatabaei, S. F., Salleh, M., Abbasy, M. R., & Torkaman, M. R. N. (2011). Denial of service (DoS) attack detection by using fuzzy logic over network flows. In The 2011 international conference on security & management.

  20. Almseidin, M., & Kovacs, S. (2018). Intrusion detection mechanism using fuzzy rule interpolation. Journal of Theoretical and Applied Information Technology, 96(16).

  21. Sherazia, H. H. R., Iqbalb, R., Ahmadc, F., Khand, Z. A., & Chaudary, M. H. (2019). DDoS attack detection: A key enabler for sustainable communication on the internet of vehicles. Sustainable Computing: Informatics and Systems, 23, 13–20. https://doi.org/10.1016/j.suscom.2019.05.002

    Article  Google Scholar 

  22. Shiaeles, S. N., Katos, V., Karakos, A. S., & Papadopoulos, B. K. (2012). Real-time DDoS detection using fuzzy estimators. Computers & Security, 31, 782–790. https://doi.org/10.1016/j.cose.2012.06.002

    Article  Google Scholar 

  23. Indraneel, S., & Vuppala, V. (2017). HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm. Applied Computing and Informatics, 15, 59–66. https://doi.org/10.1016/j.aci.2017.10.003

    Article  Google Scholar 

  24. Haider, S., Akhunzada, A., Mustafa, I., Patel, T. B., Fernandez, A., Raymond Choo, K. K., & Iqbal, J. (2020). A deep CNN ensemble framework for efficient DDoS attack detection in software defined networks. IEEE Access, 8, 53972–53983. https://doi.org/10.1109/ACCESS.2020.2976908

    Article  Google Scholar 

  25. Pérez-Díaz, J. A., Valdovinos, I. A., Choo, K.-K.R., & Zhu, D. (2020). A flexible SDN-based architecture for identifying and mitigating low-rate DDoS attacks using machine learning. IEEE Access, 8, 155859–155872. https://doi.org/10.1109/ACCESS.2020.3019330

    Article  Google Scholar 

  26. Tang, C., & Han, D. (2020). A low resource consumption clone detection method for multi-base station wireless sensor networks. IEEE Access, 8, 128349–128361. https://doi.org/10.1109/ACCESS.2020.3007388

    Article  Google Scholar 

  27. Gavel, S., Raghuvanshi, A. S., & Tiwari, S. (2020). A novel density estimation based intrusion detection technique with Pearson’s divergence for Wireless Sensor Networks. ISA Transactions. https://doi.org/10.1016/j.isatra.2020.11.016

    Article  Google Scholar 

  28. Tas, I. M., Unsalver, B. G., & Baktir, S. (2020). A novel SIP based distributed reflection denial-of-service attack and an effective defense mechanism. IEEE Access, 8, 112574–112584. https://doi.org/10.1109/ACCESS.2020.3001688

    Article  Google Scholar 

  29. Anitha, S., Jayanthi, P., & Chandrasekaran, V. (2021). An intelligent based healthcare security monitoring schemes for detection of node replication attack in wireless sensor networks. Measurement, 167, 108272. https://doi.org/10.1016/j.measurement.2020.108272

    Article  Google Scholar 

  30. Poornima, I. G. A., & Paramasivan, B. (2020). Anomaly detection in wireless sensor network using machine learning algorithm. Computer Communications, 151, 331–337. https://doi.org/10.1016/j.comcom.2020.01.005

    Article  Google Scholar 

  31. Scaranti, G. F., Carvalho, L. F., Barbon, S., & Proença, M. L. (2020). Artificial immune systems and fuzzy logic to detect flooding attacks in software-defined networks. IEEE Access, 8, 100172–100184. https://doi.org/10.1109/ACCESS.2020.2997939

    Article  Google Scholar 

  32. Yang, W., Zhang, X., Luo, W., & Zuo, Z. (2021). Detection against randomly occurring complex attacks on distributed state estimation. Information Sciences, 547, 539–552. https://doi.org/10.1016/j.ins.2020.08.008

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang, Yu., Jin, L., Zhong, Z., Lou, Y., & Zhang, S. (2019). Detection and defense of active attacks for generating secret key from wireless channels in static environment. ISA Transactions. https://doi.org/10.1016/j.isatra.2019.11.001

    Article  Google Scholar 

  34. Premkumar, M., & Sundararajan, T. V. P. (2020). DLDM: Deep learning-based defense mechanism for denial of service attacks in wireless sensor networks. Microprocessors and Microsystems, 79, 103278. https://doi.org/10.1016/j.micpro.2020.103278

    Article  Google Scholar 

  35. Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy preserving secure measure against wormhole attack in wireless sensor networks. IEEE Access, 7, 84132–84141. https://doi.org/10.1109/ACCESS.2019.2924283

    Article  Google Scholar 

  36. Benmoussa, A., el Karim Tahari, A., Kerrache, C. A., Lagraa, N., Lakas, A., Hussain, R., & Ahmad, F. (2020). MSIDN: Mitigation of sophisticated interest flooding-based DDoS attacks in named data networking. Future Generation Computer Systems, 107, 293–306. https://doi.org/10.1016/j.future.2020.01.043

    Article  Google Scholar 

  37. Devi, P. P., & Jaison, B. (2020). Protection on wireless sensor network from clone attack using the SDN-enabled hybrid clone node detection mechanisms. Computer Communications, 152, 316–322. https://doi.org/10.1016/j.comcom.2020.01.064

    Article  Google Scholar 

  38. Jiang, S., Zhao, J., & Xu, X. (2020). SLGBM: An intrusion detection mechanism for wireless sensor networks in smart environments. IEEE Access, 8, 169548–169558. https://doi.org/10.1109/ACCESS.2020.3024219

    Article  Google Scholar 

  39. Balaji, S., Julie, G., Rajaram, M., & Robinson, H. (2016). Fuzzy based particle swarm optimization routing technique for load balancing in wireless sensor networks. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, 10, 1384–1393.

    Google Scholar 

  40. Anitha, S., Jayanthi, P., & Thangarajan, R. (2020). Detection of replica node attack based on exponential moving average model in wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07648-w

    Article  Google Scholar 

  41. Tamilarasi, N., & Santhi, S. (2020). Detection of wormhole attack and secure path selection in wireless sensor network. Wireless Personal Communications, 114(1), 329–345.

    Article  Google Scholar 

  42. Gandhimathi, L., & Murugaboopathi, G. (2021). Mobile malicious node detection using mobile agent in cluster-based wireless sensor networks. Wireless Personal Communications, 117(2), 1–14. https://doi.org/10.1007/s11277-020-07918-7

    Article  Google Scholar 

  43. Sinha, S., & Paul, A. (2020). Neuro-fuzzy based intrusion detection system for wireless sensor network. Wireless Personal Communications, 114(1), 835–851. https://doi.org/10.1007/s11277-020-07395-y

    Article  Google Scholar 

  44. Bhattacharya, S., Maddikunta, P. K., Kaluri, R., Singh, S., Gadekallu, T. R., Alazab, M., & Tariq, U. (2020). A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics, 9, 219. https://doi.org/10.3390/electronics9020219

    Article  Google Scholar 

  45. Swarna Priya, R. M., Maddikunta, P. K., Parimala, M., Koppu, S., Gadekallu, T. R., Chowdhary, C. L., & Alazab, M. (2020). An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Computer Communications, 160, 139–149.

    Article  Google Scholar 

  46. Rehman, A., Rehman, S. U., Khan, M., Alazab, M., & Reddy, T. (2021). CANintelliIDS: Detecting in-vehicle intrusion attacks on a controller area network using CNN and attention-based GRU. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2021.3059881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. J. Beslin Pajila: Writing—original draft, Writing—review & editing, Conceptualization, Data curation. E. Golden Julie: Data curation, Validation, Formal analysis, Supervision. Y. Harold Robinson: Conceptualization, Data curation.

Corresponding author

Correspondence to P. J. Beslin Pajila.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Human and animal rights

This research does not involve any human or animal participation. All authors have checked and agreed the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajila, P.J.B., Julie, E.G. & Robinson, Y.H. FBDR-Fuzzy Based DDoS Attack Detection and Recovery Mechanism for Wireless Sensor Networks. Wireless Pers Commun 122, 3053–3083 (2022). https://doi.org/10.1007/s11277-021-09040-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09040-8

Keywords

Navigation