Skip to main content
Log in

Compact Sub-6 GHz and mmWave 5G Wideband 2 × 1 MIMO Antenna with High Isolation Using Parasitically Placed Double Negative (DNG) Isolator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a multiband modified ‘W’ shaped, Multiple input multiple output (MIMO) antenna with a metamaterial inspired isolator for enhanced isolation is proposed for 5G application. The two-element MIMO antenna comprises of a closely placed (edge to edge gap of 0.117λo, λo = highest operating wavelength) antenna elements that covers both sub-6 GHz (3.42–4.25 GHz) and millimeter wave (mmWave) range bands (24.8–26.5 GHz) of 5G with bandwidth of 821 MHz and 1630 MHz. The MIMO antenna also covers bands C (7.44–7.92 GHz), X (9.9–10.49 GHz), Ku (12.02–13.39 GHz & 15.92–17.492 GHz), K (19.49–22.42 GHz), partially. The isolation level in all resonating bands remain near to the acceptable value of (|S12|>  −15 dB) however a very significant mutual coupling effect is observed in sub-6 GHz range (|S12|=  −11.92 dB at 3.94 GHz). To improve the isolation in sub-6 GHz band, a metamaterial inspired isolator comprising of Double negative (DNG) unit cells is uniquely placed along the side of the closely positioned antenna elements. Simulated results indicate that isolation level improves to (|S12|=  −16.1 dB at 3.94 GHz) after placing the DNG metamaterial based isolator. The antenna performance parameters such as gain, return loss, bandwidth, Envelope correlation coefficient (ECC), Diversity gain (DG) and radiation efficiency are not affected by placement of isolator. The metamaterial equipped MIMO antenna (Meta–MIMO antenna) has a compact structure of 70 × 40 × 0.8 mm3, with a high isolation in all bands (|S12|> −16 dB), peak gain of 7.8dBi, low ECC (< 0.05), high diversity gain (9.98 dB) and efficiency (≈91.38%). Further the proposed Meta-MIMO antenna performance for practical applications is investigated by connecting to different sizes of ground plane, the results indicate that the isolation levels and efficiency do not deteriorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data can be made available with appropriate request to the corresponding author.

References

  1. GSMA white paper (2021). 5G Spectrum from http://www.coleago.com/wp-content/uploads/2020/12/Demand-for-IMT-spectrum-Coleago-14-Dec-2020.pdf.

  2. Saxena, S., Kanaujia, B. K., Dwari, S., et al. (2018). MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electronic Letters, 54, 478–480.

    Article  Google Scholar 

  3. Jing, Y.-D., Yao, J., Sun, D., et al. (2018). Ten-element MIMO antenna for 5G terminals. Microwave and Optical Technology Letters, 60(3), 759–765.

    Article  Google Scholar 

  4. Andrews, J. G., Buzzi, S., Choi, W., et al. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  5. Kumar G., Ray, K.P. (2003). Broadband Microstrip Antennas, Artech House, MA.

  6. Hussain, R., Khan, M. U., & Sharawi, M. S. (2018). An integrated dual MIMO antenna system with dual-function GND-plane frequency-agile antenna. IEEE Antennas and Wireless Propagation Letters, 17(1), 142–145. https://doi.org/10.1109/LAWP.2017.2778182

    Article  Google Scholar 

  7. Jehangir, S. S., & Sharawi, M. S. (2017). A miniaturized UWB biplanar yagi-Like MIMO antenna system. IEEE Antennas and Wireless Propagation Letters, 16, 2320–2323. https://doi.org/10.1109/LAWP.2017.2716963

    Article  Google Scholar 

  8. Babu, K. V., & Anuradha, B. (2021). Design of UWB MIMO antenna to reduce the mutual coupling using defected ground structure. Wireless Personal Communication, 118, 3469–3484. https://doi.org/10.1007/s11277-021-08189-6

    Article  Google Scholar 

  9. Niu, Z., Zhang, H., Chen, Q., et al. (2019). Isolation enhancement for closely spaced E-plane patch antenna array using defect ground structure and metal-vias. IEEE Access, 7, 119375–119383. https://doi.org/10.1109/ACCESS.2019.2937385

    Article  Google Scholar 

  10. Jamal, M. Y., Li, M., & Yeung, K. L. (2020). isolation enhancement of closely packed dual circularly polarized MIMO antenna using hybrid technique. IEEE Access, 8, 11241–11247. https://doi.org/10.1109/ACCESS.2020.2964902

    Article  Google Scholar 

  11. Ramesh, R., & Kommuri, U. K. (2020). Isolation enhancement for dual-band MIMO antenna system using multiple slots loading technique. International Journal of Communication System. https://doi.org/10.1002/dac.4470

    Article  Google Scholar 

  12. Ghosh, C. K., Pratap, M., Kumar, R., et al. (2020). Mutual coupling reduction of microstrip MIMO antenna using microstrip resonator. Wireless Personal Communications, 112, 2047–2056. https://doi.org/10.1007/s11277-020-07138-z

    Article  Google Scholar 

  13. Tang, M., et al. (2017). Mutual coupling reduction using meta-structures for wideband, dual-polarized, and high-density patch arrays. IEEE Transactions on Antennas and Propagation, 65(8), 3986–3998. https://doi.org/10.1109/TAP.2017.2710214

    Article  Google Scholar 

  14. Sarkar, D., & Srivastava, K. V. (2017). Compact four-element SRR-loaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4G-LTE and 5G applications. Electronics Letters, 53(25), 1623–1624.

    Article  Google Scholar 

  15. Roy, S., & Chakraborty, U. (2020). Mutual coupling reduction in a multi-band MIMO antenna using meta-inspired decoupling network. Wireless Personal Communications, 114, 3231–3246. https://doi.org/10.1007/s11277-020-07526-5

    Article  Google Scholar 

  16. Alibakhshikenari, M., Khalily, M., Virdee, B. S., et al. (2019). Mutual coupling suppression between two closely placed microstrip patches using EM-Bandgap metamaterial fractal loading. IEEE Access, 7, 23606–23614. https://doi.org/10.1109/ACCESS.2019.2899326

    Article  Google Scholar 

  17. Liu, F., Guo, J., Zhao, L., et al. (2020). Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Transactions on Antennas and Propagation, 68(1), 552–557. https://doi.org/10.1109/TAP.2019.294031

    Article  Google Scholar 

  18. Guo, J., Liu, F., Zhao, L., et al. (2019). Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-plane and E-plane. IEEE Access, 7, 100442–100452. https://doi.org/10.1109/ACCESS.2019.2930687

    Article  Google Scholar 

  19. Feng, B., Chung, K. L., Lai, J., & Zeng, O. (2019). A conformal magneto- electric dipole antenna with wide H-plane and band-notch radiation characteristics for sub-6-GHz 5G base-station. IEEE Access, 7, 17469–17479. https://doi.org/10.1109/ACCESS.2019.2896356

    Article  Google Scholar 

  20. Jiang, T., Jiao, T., & Li, Y. (2018). A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures. Applied Computational Electronics Society Journal, 33(3), 305–311.

    Google Scholar 

  21. Liu, Y., Yang, X., Jia, Y., & Guo, Y. J. (2019). A low correlation and mutual coupling MIMO antenna. IEEE Access, 7, 127384–127392. https://doi.org/10.1109/ACCESS.2019.2939270

    Article  Google Scholar 

  22. Tan, X., Wang, W., Wu, Y., et al. (2019). Enhancing isolation in dual-band meander-line multiple antenna by employing split EBG structure. IEEE Transactions on Antennas and Propagation, 67(4), 2769–2774. https://doi.org/10.1109/TAP.2019.2897489

    Article  Google Scholar 

  23. Wang, M., Xu, B., Li, Y., et al. (2019). Multiband multiple-input multiple-output antenna with high isolation for future 5G smartphone applications. International Journal of RF and Microwave Computer Aided Engineering. https://doi.org/10.1002/mmce.21758

    Article  Google Scholar 

  24. Li, Y., Sim, C.-Y., Luo, Y., et al. (2019). Metal-frame-integrated eight-element multiple-input multiple-output antenna array in the long-term evolution bands 41/42/43 for fifth generation smartphones. International Journal of RF and Microwave Computer Aided Engineering. https://doi.org/10.1002/mmce.21495

    Article  Google Scholar 

  25. Hu, W., et al. (2019). Dual-band ten-element MIMO array based on dual-mode IFAs for 5G terminal applications. IEEE Access, 7, 178476–178485. https://doi.org/10.1109/ACCESS.2019.2958745

    Article  Google Scholar 

  26. Serghiou, D., Khalily, M., Singh, V., et al. (2020). Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters, 19(9), 1546–1550. https://doi.org/10.1109/LAWP.2020.3008962

    Article  Google Scholar 

  27. Biswas, A., & Gupta, V. R. (2020). Design and development of low profile MIMO antenna for 5G new radio smartphone applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06949-z

    Article  Google Scholar 

  28. Xu, Z., & Deng, C. (2020). High-isolated MIMO antenna design based on pattern diversity for 5G mobile terminals. IEEE Antennas and Wireless Propagation Letters, 19(3), 467–471. https://doi.org/10.1109/LAWP.2020.2966734

    Article  Google Scholar 

  29. Abbas, E. A., Ikram, M., Mobashsher, A. T., et al. (2019). MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications. IEEE Access, 7, 181916–181923. https://doi.org/10.1109/ACCESS.2019.2958897

    Article  Google Scholar 

  30. Wong, K., Chang, H., Chen, J., et al. (2020). Three wideband monopolar patch antennas in a Y-shape structure for 5G multi-input–multi-output access points. IEEE Antennas and Wireless Propagation Letters, 19(3), 393–397. https://doi.org/10.1109/LAWP.2020.2967354

    Article  Google Scholar 

  31. Zhao, A., & Ren, Z. (2019). Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals. IEEE Access, 7, 93761–93771. https://doi.org/10.1109/ACCESS.2019.2913466

    Article  Google Scholar 

  32. Ren, Z., Zhao, A., & Wu, S. (2019). MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals. IEEE Antennas and Wireless Propagation Letters, 18(7), 1367–1371. https://doi.org/10.1109/LAWP.2019.2916738

    Article  Google Scholar 

  33. Ikram, M., Nguyen-Trong, N., & Abbosh, A. (2020). Hybrid antenna using open-ended slot for integrated 4G/5G mobile application. IEEE Antennas and Wireless Propagation Letters, 19(4), 710–714. https://doi.org/10.1109/LAWP.2020.2978181

    Article  Google Scholar 

  34. Rusni, I. M., Ismail, A., Alhawari, A. R. H., et al. (2014). An aligned-gap and centered-gap rectangular multiple split ring resonator for dielectric sensing applications. Sensors, 2014(14), 13134–13148.

    Article  Google Scholar 

  35. Balanis, C.A. (2005). Antenna Theory Analysis and Design. John Wiley & Sons, New York.

  36. Nadeem, I., & Choi, D. Y. (2019). Study on mutual coupling reduction technique for MIMO antennas. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2885558

    Article  Google Scholar 

  37. Krzysztofik,W.J., Cao,T.N. (2018). Metamaterials in Application to Improve Antenna parameters. In Joseph Canet-Ferrer (Eds.), Metamaterials and Metasurfaces, IntechOpen, https://doi.org/10.5772/intechopen.80636.

  38. Dong, Y., & Itoh, T. (2012). Metamaterial-based antenna. Proceedings of the IEEE, 100(7), 2271–2285. https://doi.org/10.1109/JPROC.2012.2187631

    Article  Google Scholar 

  39. Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics. IEEE Antennas Propagation Magazine, 55(5), 218–232.

    Article  Google Scholar 

  40. Sharawi, M., Hassan, A., & Khan, M. (2017). Correlation coefficient calculations for MIMO antenna systems: a comparative study. International Journal of Microwave and Wireless Technologies, 9(10), 1991–2004. https://doi.org/10.1017/S1759078717000903

    Article  Google Scholar 

  41. Caloz, C., & Itoh, T. (2006). Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, The Engineering Approach. John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashbha Sharma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

According to Nicholson Ross weir method, the dielectric parameters i.e. permittivity, permeability and refractive index of a metamaterial can be expresses in terms of its dielectric thickness (d), reflection(S11) and transmission coefficients (S21) as per following equations [41]:

$$\varepsilon_{r} \approx \frac{2}{j\pi fd} \times \frac{{1 - A_{1} }}{{1 + A_{1} }}$$
(4)
$$\mu_{r} \approx \frac{2}{j\pi fd} \times \frac{{1 - A_{2} }}{{1 + A_{2} }}$$
(5)
$$n_{r} = \sqrt {\mu_{r} \varepsilon_{r} }$$
(6)

where,

$$A_{1} = S_{21} + S_{11}$$
(7)
$$A_{2} = S_{21} - S_{11}$$
(8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Khanna, R. & Geetanjali Compact Sub-6 GHz and mmWave 5G Wideband 2 × 1 MIMO Antenna with High Isolation Using Parasitically Placed Double Negative (DNG) Isolator. Wireless Pers Commun 122, 2839–2857 (2022). https://doi.org/10.1007/s11277-021-09032-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09032-8

Keywords

Navigation