Skip to main content
Log in

Spectrum Sensing Techniques Based on Last Status Change Point Estimation for Dynamic Primary User in Additive Laplacian Noise

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A real time scenario of dynamic primary user (PU) is considered in additive Laplacian noise. Two transitions or status changes of PU in the fixed sensing time are considered. The last status change point (LSCP) is estimated with maximum likelihood estimation by using dynamic programming. We consider Cumulative Sum (CuSum) based weighted samples for detection. We consider three detection schemes such as sample mean detector, energy detection and improved absolute value cumulation detection. We derive closed form expressions of detection probability \((P_D)\) and false alarm probability \((P_F)\) for all the three schemes. We present our results with receiver operating characteristic (ROC) for the considered schemes. We also present simulation results, which are closely matching with their analytical counterparts. We compare the ROC of the considered system with the ROC of conventional techniques. In the conventional techniques, all the samples in the sensing time are used for detection without LSCP estimation and weight. It is found that the considered system outperforms the conventional schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang, L., Fang, J., Duan, H., & Li, H. (2020). Fast compressed power spectrum estimation: toward a practical solution for wideband spectrum sensing. IEEE Trans. Wirel. Commun., 19(1), 520–532.

    Article  Google Scholar 

  2. Liu, M., Zhao, N., Li, J., & Leung, V. C. M. (2019). Spectrum sensing based on maximum generalized correntropy under symmetric alpha stable noise. IEEE Trans. Veh. Technol., 68(10), 10262–10266.

    Article  Google Scholar 

  3. Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5g: a survey. IEEE Access, 6, 15754–15776.

    Article  Google Scholar 

  4. Venkateshkumar, U., & Ramakrishnan, S. (2020). Detection of spectrum hole from n-number of primary users using machine learning algorithms. J. Eng., 2020(5), 175–188.

    Article  Google Scholar 

  5. MacDonald, S., Popescu, D. C., & Popescu, O. (2017). Analyzing the performance of spectrum sensing in cognitive radio systems with dynamic pu activity. IEEE Commun. Lett., 21(9), 2037–2040.

    Article  Google Scholar 

  6. Beaulieu, N. C., & Chen, Y. (2010). Improved energy detectors for cognitive radios with randomly arriving or departing primary users. IEEE Signal Process. Lett., 17(10), 867–870.

    Article  Google Scholar 

  7. Kay, S. M. (1998). Fundamentals of Statistical Signal Processing. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  8. Chen, L., Zhao, N., Chen, Y., Yu, F. R., & Wei, G. (2018). Over-the-air computation for cooperative wideband spectrum sensing and performance analysis. IEEE Trans. Veh. Technol., 67(11), 10603–10614.

    Article  Google Scholar 

  9. Yoo, S. K., Sofotasios, P. C., Cotton, S. L., Muhaidat, S., Badarneh, O. S., & Karagiannidis, G. K. (2019). Entropy and energy detection-based spectrum sensing over \(\cal{F}\) -composite fading channels. IEEE Trans. Commun., 67(7), 4641–4653.

    Article  Google Scholar 

  10. Chen, Y. (2010). Improved energy detector for random signals in gaussian noise. IEEE Trans. Wirel. Commun., 9(2), 558–563.

    Article  Google Scholar 

  11. Düzenli, T., & Akay, O. (2016). A new spectrum sensing strategy for dynamic primary users in cognitive radio. IEEE Commun. Lett., 20(4), 752–755.

    Article  Google Scholar 

  12. Shen, J., & Alsusa, E. (2013). An efficient multiple lags selection method for cyclostationary feature based spectrum-sensing. IEEE Signal Process. Lett., 20(2), 133–136.

    Article  Google Scholar 

  13. Tang, L., Chen, Y., Hines, E. L., & Alouini, M. (2012). Performance analysis of spectrum sensing with multiple status changes in primary user traffic. IEEE Commun. Lett., 16(6), 874–877.

    Article  Google Scholar 

  14. B. Hu, N.C. Beaulieu, On characterizing multiple access interference in th-uwb systems with impulsive noise models, in 2008 IEEE Radio and Wireless Symposium (2008), pp. 879–882

  15. Shongwe, T., Vinck, A. J. H., & Ferreira, H. C. (2015). A study on impulse noise and its models. SAIEE Afr. Res. J., 106(3), 119–131.

    Article  Google Scholar 

  16. Shao, M., & Nikias, C. L. (1993). Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE, 81(7), 936–1010.

    Article  Google Scholar 

  17. Zhou, F., Beaulieu, N. C., Li, Z., & Si, J. (2016). Feasibility of maximum eigenvalue cooperative spectrum sensing based on Cholesky factorisation. IET Commun., 10(2), 199–206.

    Article  Google Scholar 

  18. Win, M. Z., & Scholtz, R. A. (2000). Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans. Commun., 48(4), 679–689.

    Article  Google Scholar 

  19. Y. Ye, Y. Li, G. Lu, F. Zhou, H. Zhang, Performance of spectrum sensing based on absolute value cumulation in laplacian noise, in in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (2000), pp. 1–5

  20. Ye, Y., Li, Y., Lu, G., & Zhou, F. (2000). Improved energy detection with laplacian noise in cognitive radio. IEEE Syst. J., 13(1), 18–29.

    Article  Google Scholar 

  21. Geddes, K. O., Glasser, M. L., Moore, R. A., et al. (1990). Evaluation of classes of definite integrals involving elementary functions via differentiation of special functions. Alegbra Eng. Commun. Comput., 1(2), 149–165.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Trivedi.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A. Proof of \(E[Z'(\mathbf{y} )|H'_o]\)

From (7), we have

$$\begin{aligned} Z'(\mathbf{y} )&= \frac{1}{N-L_{scp}}\left( \sum \limits _{m = 1}^{N-L_{scp}} (N-L_{scp}-m+1) y_{N-m+1}\right) . \end{aligned}$$
(20)

Expanding the above expression, we get

$$\begin{aligned} E[Z'(\mathbf{y} )|H'_o]&= \frac{1}{N-L_{scp}}E\Bigg [ (N-L_{scp}) w_{N}\nonumber \\&\quad +(N-L_{scp}-1)w_{N-1}+\cdots +w_{L_{scp}+1}\Bigg ]. \end{aligned}$$
(21)

As \(w_N,w_{N-1},w_{N-2}\cdots\) are all i.i.ds, hence

\(E\big [w_N\big ]=E[w_{N-1}\big ]=\cdots E\big [w_{L_{scp}+1}\big ]=0.\) The above expression of \(E[Z'(\mathbf{y} )|H'_o]\) can be further simplified as

$$\begin{aligned} E[Z'(\mathbf{y} )|H'_o]&=0. \end{aligned}$$

B. Proof of \(var[Z'(\mathbf{y} )|H'_o]\)

We have

$$\begin{aligned} var[Z'(\mathbf{y} )|H'_o]&= var\left[ \frac{1}{N-L_{scp}}\left( \sum \limits _{m = 1}^{N-L_{scp}} (N-L_{scp}-m+1)y_{N-m+1}\right) \right] \nonumber \\&= {\bigg (\frac{1}{N-L_{scp}}}\bigg ) var\Bigg [ (N-L_{scp}) w_N+(N-L_{scp}-1) w_{N-1} \nonumber \\&\quad + \cdots +w_{L_{scp}+1}\Bigg ]. \end{aligned}$$
(22)

As \(w_N,w_{N-1},w_{N-2}\cdots\) are all i.i.ds, hence \(var\big [w_N\big ]=var[w_{N-1}\big ]=\cdots var\big [w_{L_{scp}+1}\big ]=2b^2.\) The above expression of \(var[Z'(\mathbf{y} )|H'_o]\) can be further simplified as

$$\begin{aligned} var[Z'(\mathbf{y} )|H'_o]&= \frac{2b^2}{{(N-L_{scp})}^2}\Bigg [ (N-L_{scp})^2\\&\quad +(N-L_{scp}-1)^2+ \cdots +1^2\Bigg ]\\&= \frac{2b^2}{{(N-L_{scp})}^2}\Bigg [1^2+2^2+\cdots + (N-L_{scp-2})^2\\&\quad +(N-L_{scp}-1)^2+(N-L_{scp})^2\Bigg ]\\&=\frac{2b^2}{6}\Bigg [\frac{(N-L_{scp}+1)\big \{(2(N-L_{scp})+1\big \}}{N-L_{scp}}\Bigg ]. \end{aligned}$$

As \(L_{scp}=\hat{N_2}\), the final expression becomes

$$\begin{aligned} var[Z'(\mathbf{y} )|H'_o]= \frac{2b^2}{6}\Bigg [\frac{(N-\hat{N_2}+1)\big \{(2(N-\hat{N_2})+1\big \}}{N-\hat{N_2}}\Bigg ] \end{aligned}$$
(23)

C. Proof of \(E[Z'(\mathbf{y} )|H'_1]\)

We have

$$\begin{aligned} E[Z'(\mathbf{y} )|H'_1] = E\left[ \frac{1}{N-L_{scp}}\left( \sum \limits _{m = 1}^{N-L_{scp}} (N-L_{scp}-m+1) y_{N-m+1}\right) \right] . \end{aligned}$$
(24)

Expanding the above expression, we get

$$\begin{aligned} E[Z'(\mathbf{y} )|H'_1]&= \frac{1}{N-L_{scp}}E\Bigg [ (N-L_{scp}) \big \{w_{N}+C\big \}\\&\quad +(N-L_{scp}-1)\big \{w_{N-1}+C\big \}+\cdots +\big \{w_{L_{scp}+1}+C\big \}\Bigg ]. \end{aligned}$$

As \(w_N,w_{N-1},w_{N-2}\cdots\) are all i.i.ds, hence \(E\big [w_N\big ]=E[w_{N-1}\big ]=\cdots E\big [w_{L_{scp}+1}\big ]=0.\) The above expression of \(E[Z'(\mathbf{y} )|H'_1]\) can be further simplified as

$$\begin{aligned} E[Z'(\mathbf{y} )|H'_1]&= \frac{1}{N-L_{scp}}\Bigg [ C(N-L_{scp}) \\&\quad +C(N-L_{scp}-1)+C(N-L_{scp}-2)+\cdots +C\Bigg ]\\&=\frac{C}{N-L_{scp}}\Bigg [ (N-L_{scp}) \\&\quad +(N-L_{scp}-1)+(N-L_{scp}-2)+\cdots +1\Bigg ]\\&=\frac{C}{2}\bigg \{N-L_{scp}-1\bigg \}. \end{aligned}$$

As \(L_{scp}=\hat{N_2'}\), the final expression becomes

$$\begin{aligned} E[Z'(\mathbf{y} )|H'_1]= \frac{C}{2}\bigg \{N-\hat{N_2'}-1\bigg \}. \end{aligned}$$
(25)

D. Proof of \(var[Z'(\mathbf{y} )|H'_1]\)

We have

$$\begin{aligned} var\left[ Z'(\mathbf{y} )|H'_1\right]&= var\left[ \frac{1}{N-L_{scp}}\left( \sum \limits _{m = 1}^{N-L_{scp}} (N-L_{scp}-m+1) y_{N-m+1}\right) \right] \nonumber \\&= {\bigg (\frac{1}{N-L_{scp}}}\bigg )var\Bigg [ (N-L_{scp}) \big \{w_N+C\big \}+(N-L_{scp}-1)\big \{w_{N-1}+C\big \} \nonumber \\&\quad + \cdots +\big \{w_{L_{scp}+1}+C\big \}\Bigg ]. \end{aligned}$$
(26)

As \(w_N,w_{N-1},w_{N-2}\cdots\) are all i.i.ds, hence \(var\big [w_N\big ]=var[w_{N-1}\big ]=\cdots var\big [w_{L_{scp}+1}\big ]=2b^2.\) The above expression of \(var[Z'(\mathbf{y} )|H'_1]\) can be further simplified as

$$\begin{aligned}&var[Z'(\mathbf{y} )|H'_1]= \frac{2b^2}{{(N-L_{scp})}^2}\Bigg [ (N-L_{scp})^2\nonumber \\&\quad +(N-L_{scp}-1)^2+ \cdots +1^2\Bigg ]\nonumber \\&= \frac{2b^2}{{(N-L_{scp})}^2}\Bigg [1^2+2^2+\cdots + (N-L_{scp-2})^2\nonumber \\&\quad +(N-L_{scp}-1)^2+(N-L_{scp})^2\Bigg ]\nonumber \\&=\frac{2b^2}{6}\Bigg [\frac{(N-L_{scp}+1)\big \{(2(N-L_{scp})+1\big \}}{N-L_{scp}}\Bigg ]\nonumber \\&=\frac{2b^2}{6}\Bigg [\frac{(N-\hat{N_2'}+1)\big \{(2(N-\hat{N_2'})+1\big \}}{N-\hat{N_2'}}\Bigg ]. \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, K., Trivedi, Y.N. Spectrum Sensing Techniques Based on Last Status Change Point Estimation for Dynamic Primary User in Additive Laplacian Noise. Wireless Pers Commun 122, 2131–2143 (2022). https://doi.org/10.1007/s11277-021-08984-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08984-1

Keywords

Navigation