Skip to main content
Log in

Analyzing and Optimizing Cooperative Communication for in Vivo WBAN

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The emerging Wireless Body Area Network (WBAN) has a great potential to strengthen health care sector, as it paves ways for the development of new services and applications. In making WBAN technically feasible, high Signal to Noise ratio (SNR) and low outage probability plays a vital role. In vivo communication is one where communication between living beings can be carried out wirelessly. It utilizes data gathered in real time for quick and accurate responses in emergency situations. To fully benefit from and further explore the potentiality of WBANs for realistic applications, it is critical to analyze the performance of in vivo WBAN communication over different frequency bands. Over the past many years, Medical Implant Communication System (MICS) band has extensively been used for implant medical applications and Terahertz (THz) band shows promising link capability to support increased data rates. In the proposed work, performance of an in vivo WBAN system, at MICS and Terahertz frequencies based upon IEEE 802.15.6 channel models (CM), CM1 and CM2 has been assessed. The effect of incorporating cooperative communication for in vivo WBAN is then presented to see how it enhances the network performance at both the bands. The impact on the system’s SNR and outage probability is investigated for number of relays. The outage behavior of amplify and forward cooperative communication with multiple relays is investigated over a Rayleigh fading channel. Results show considerable increase in the system SNR and decrease in outage probability with increase in number of relays, which strongly indicates the possibility of incorporating cooperative communication to elevate the performance of in vivo WBAN at both MICS and terahertz frequencies. Further, nature inspired optimization is done to reduce the outage probability. Results show that the projected technique surpasses the non-optimized technique and ensures favorable results. The results achieved at THz band have also been compared to that obtained at MICS band and it is demonstrated that better performance can be achieved at THz band by incorporating cooperative communication in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Demir, A. F., Ankarali, Z. E., Abbasi, Q. H., Liu, Y., Qaraqe, K., Serpedin, E., Arslan, H., & Gitlin, R. D. (2016). In vivo communications: Steps toward the next generation of implantable devices. IEEE Vehicular Technology Magazine, 11(2), 32–42. https://doi.org/10.1109/MVT.2016.2520492

    Article  Google Scholar 

  2. Wang, J., Han, K., Chen, Z., Alexandridis, A., Zilic, Z., Pang, Y., & Lin, J. (2018). A software defined radio evaluation platform for WBAN systems. Sensors, 18(12), 4494. https://doi.org/10.3390/s18124494

    Article  Google Scholar 

  3. Muzny, M., Henriksen, A., Giordanengo, A., Muzik, J., Grøttland, A., Blixgård, H., Gunnar, H., & Årsand, E. (2020). Wearable sensors with possibilities for data exchange: Analyzing status and needs of different actors in mobile health monitoring systems. International journal of medical informatics, 133, 104017. https://doi.org/10.1016/j.ijmedinf.2019.104017

    Article  Google Scholar 

  4. Elayan, H., Shubair, R. M., Almoosa, & N. (2018). In Vivo Communication in Wireless Body Area Networks. In Ismail L., Zhang L. (eds) Information innovation technology in smart cities. Springer, Singapore, pp. 273–287. Doi: https://doi.org/10.1007/978-981-10-1741-4_18.

  5. Belaoura, W., Ghanem, K., Imran, M. A., Alomainy, A., & Abbasi, Q. H. (2020). A cooperative massive MIMO system for future in vivo nanonetworks. IEEE Systems Journal,, pp. 1–7. https://doi.org/10.1109/JSYST.2020.2995671

  6. Khan, J. Y., & Yuce, M. R. (2010). Wireless body area network (WBAN) for medical applications. InTechOpen.

  7. Suriya, I., & Anbazhagan, R. (2019). Inverted-A based UWB MIMO antenna with triple-band notch and improved isolation for WBAN applications. AEU-International Journal of Electronics and Communications, 99, 25–33. https://doi.org/10.1016/j.aeue.2018.11.030

    Article  Google Scholar 

  8. Oh, J. Y., Kim, J. H., Lee, H. S., & Kim, J. Y. (2010). PSSK modulation scheme for high-data rate implantable medical devices. IEEE Transactions on Information Technology in Biomedicine, 14(3), 634–640. https://doi.org/10.1109/TITB.2009.2036255

    Article  Google Scholar 

  9. Arif, A., Zubair, M., Ali, M., Khan, M. U., & Mehmood, M. Q. (2019). A compact, low-profile fractal antenna for wearable on-body WBAN applications. IEEE Antennas and Wireless Propagation Letters, 18(5), 981–985. Doi: https://doi.org/10.1109/LAWP.2019.2906829.

  10. Pramanik, P. K. D., Nayyar, A., & Pareek, G. (2019). WBAN: Driving e-healthcare beyond telemedicine to remote health monitoring: architecture and protocols. In Telemedicine technologies, 89–119. Academic Press. Doi: https://doi.org/10.1016/B978-0-12-816948-3.00007-6.

  11. Islam, M. N., & Yuce, M. R. (2016). Review of medical implant communication system (MICS) band and network. Ict Express, 2(4), 188–194. https://doi.org/10.1016/j.icte.2016.08.010

    Article  Google Scholar 

  12. Cho, N., Roh, T., Bae, J., & Yoo, H. J. (2009). A planar MICS band antenna combined with a body channel communication electrode for body sensor network. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2515–2522. https://doi.org/10.1109/TMTT.2009.2029952

    Article  Google Scholar 

  13. Teshome, A. K., Kibret, B., & Lai, D. T. (2018). A review of implant communication technology in WBAN: Progress and challenges. IEEE reviews in biomedical engineering, 12, 88–99. https://doi.org/10.1109/RBME.2018.2848228

    Article  Google Scholar 

  14. Rubani, Q., Gupta, S. H., & Kumar, A. (2019). Design and analysis of circular patch antenna for WBAN at terahertz frequency. Optik, 185, 529–536. https://doi.org/10.1016/j.ijleo.2019.03.142

    Article  Google Scholar 

  15. Zhao, L., Hao, Y. H., & Peng, R. Y. (2014). Advances in the biological effects of terahertz wave radiation. Military Medical Research, 1(1), 26. https://doi.org/10.1186/s40779-014-0026-x

    Article  Google Scholar 

  16. Abbasi, Q. H., Sallabi, H. E., Chopra, N., Yang, K., Qaraqe, K. A., & Alomainy, A. (2016). Terahertz channel characterization inside the human skin for nano-scale body-centric networks. IEEE Transactions on Terahertz Science and Technology, 6(3), 427–434. https://doi.org/10.1109/TTHZ.2016.2542213

    Article  Google Scholar 

  17. Kaushik, M., Gupta, S. H., & Balyan, V. (2020). Power optimization of invivo sensor node operating at terahertz band using PSO. Optik, 202, 163530. https://doi.org/10.1016/j.ijleo.2019.163530

    Article  Google Scholar 

  18. Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communication, 10(10), 3211–3221. https://doi.org/10.1109/TWC.2011.081011.100545

    Article  Google Scholar 

  19. Elayan, H., Shubair, R. M., & Jornet, J. M. (2018). Characterizing THz propagation and intrabody thermal absorption in iWNSNs. IET Microwaves, Antennas and Propagation, 12(4), 525–532. https://doi.org/10.1049/iet-map.2017.0603

    Article  Google Scholar 

  20. Torabi, M., Ajib, W., & Haccoun, D. (2009). Performance analysis of amplify-and-forward cooperative networks with relay selection over Rayleigh fading channels. In VTC Spring 2009-IEEE 69th Vehicular Technology Conference, pp. 1–5. Doi: https://doi.org/10.1109/VETECS.2009.507377

  21. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16–32. https://doi.org/10.1016/j.phycom.2014.01.006

    Article  Google Scholar 

  22. He, C., Liu, Y., Ketterl, T.P., Arrobo, G.E., & Gitlin, R.D. (2014). Performance evaluation for MIMO in vivo WBAN systems. In 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014),pp. 1–3. Doi: https://doi.org/10.1109/IMWS-BIO.2014.7032380.

  23. Monteiro, M.E., Rebelatto, J.L., & Brante, G. (2018). On the Energy Efficiency of Relay-Assisted In Vivo Nano-Networks Communications. In 2018 15th International Symposium on Wireless Communication Systems (ISWCS),pp. 1–5. IEEE. Doi: https://doi.org/10.1109/ISWCS.2018.8491066.

  24. Zhou, Z., Zhou, S., Cui, S., & Cui, J. H. (2008). Energy-efficient cooperative communication in a clustered wireless sensor network. IEEE Transactions on Vehicular Technology, 57(6), 3618–3628. https://doi.org/10.1109/TVT.2008.918730

    Article  Google Scholar 

  25. Sadek, A. K., Yu, W., & Liu, K. R. (2010). On the energy efficiency of cooperative communications in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 6(1), 1–21. https://doi.org/10.1145/1653760.1653765

    Article  Google Scholar 

  26. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80. https://doi.org/10.1109/MCOM.2004.1341264

    Article  Google Scholar 

  27. Arora, N., Gupta, S. H., & Kumar, B. (2020). An approach to investigate the best location for the central node placement for energy efficient WBAN. Journal of Ambient Intelligence and Humanized Computing,, pp. 1–12,. https://doi.org/10.1007/s12652-020-01847-w

  28. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. https://doi.org/10.1109/TIT.2004.838089

    Article  MathSciNet  MATH  Google Scholar 

  29. Yazdandoost, K., & Sayrafian, K. (2009). Channel model for body area network (BAN). IEEE p802. 15–08–0780–09–0006. IEEE 802.15 Working Group Document.

  30. Dombrowski, C., & Gross, J. (2011). Reducing outage probability over wireless channels under hard real-time constraints. In proceedings of the 1st workshop on real-time wireless for industrial applications (Real Win).

  31. Lüttge, U., & Souza, G. M. (2019). The Golden Section and beauty in nature: The perfection of symmetry and the charm of asymmetry. Progress in Biophysics and Molecular Biology, 146, 98–103. https://doi.org/10.1016/j.pbiomolbio.2018.12.008

    Article  Google Scholar 

  32. Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2020). A novel meta-heuristic optimization method based on golden ratio in nature. Soft Computing, 24(2), 1117–1151. https://doi.org/10.1007/s00500-019-03949-w

    Article  Google Scholar 

  33. Rathee, D., Rangi, S., Chakarvarti, S. K., & Singh, V. R. (2014). Recent trends in wireless body area network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. Health and Technology, 4(3), 239–244. https://doi.org/10.1007/s12553-014-0083-x

    Article  Google Scholar 

  34. Hammood, D. A., Rahim, H. A., Ahmad, R. B., Alkhayyat, A., Salleh, M. E. M., Abdulmalek, M., Jusoh, M., & Abbasi, Q. H. (2018). Enhancement of the duty cycle cooperative medium access control for wireless body area networks. IEEE Access, 7, 3348–3359. https://doi.org/10.1109/ACCESS.2018.2886291

    Article  Google Scholar 

  35. Zhou, X., Zhang, T., Song, L., & Zhang, Q. (2014). Energy efficiency optimization by resource allocation in wireless body area networks. In 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, PP. 1–6. Doi: https://doi.org/10.1109/VTCSpring.2014.7022907.

  36. Huang, L., Yao, X., & Wang, W. (2017). Eoc: Energy optimization coding for wireless nanosensor networks in the terahertz band. IEEE Access, 5, 2583–2590. https://doi.org/10.1109/ACCESS.2017.2665487

    Article  Google Scholar 

  37. Elayan, H., Shubair, R.M., Alomainy, A., Yang, K. (2016). In vivo terahertz EM channel characterization for nano-communications in WBANs. In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 979–980. Doi: https://doi.org/10.1109/APS.2016.7696198

  38. Nguyen, V., & Kim, B. K. (2016). Performance analysis of amplify-and-forward systems with single relay selection in correlated environments. Sensors, 16(9), 1472. https://doi.org/10.3390/s16091472

    Article  Google Scholar 

  39. Nasaruddin, N., Yusnidar, Y. (2017). Performance Evaluation of Amplify-Quantize and Forward Protocol for Multi-relay Cooperative Networks. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 15(1), 8–18. https://ph02.tci-thaijo.org/index.php/ECTI-EEC/article/view/171272

  40. Gupta, S. H., Singh, R. K., & Sharan, S. N. (2016). An approach to implement PSO to optimize outage probability of coded cooperative communication with multiple relays. Alexandria Engineering Journal, 55(3), 2805–2810. https://doi.org/10.1016/j.aej.2016.07.018

    Article  Google Scholar 

  41. Waheed, M., Ahmad, R., Ahmed, W., Drieberg, M., & Alam, M. M. (2018). Towards efficient wireless body area network using two-way relay cooperation. Sensors, 18(2), 565. https://doi.org/10.3390/s18020565

    Article  Google Scholar 

  42. Liao, Y., Leeson, M.S., & Higgins, M.D. (2015). An in-body communication link based on 400 MHz MICS band wireless body area networks. In 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), Guildford, pp. 152–155. Doi: https://doi.org/10.1109/CAMAD.2015.7390499.

  43. Katircioğlu, O., Isel, H., Ceylan, O., Taraktas, F., & Yagci, H.B., (2011). Comparing ray tracing, free space path loss and logarithmic distance path loss models in success of indoor localization with RSSI. In 2011 IEEE 19thTelecommunications Forum (TELFOR) Proceedings of Papers, Belgrade, pp. 313–316. Doi: https://doi.org/10.1109/TELFOR.2011.6143552.

  44. Elayan, H., Shubair, R.M., & Almoosa, N. (2018). In vivo communication in wireless body area networks. In Information Innovation Technology in Smart Cities, pp. 273–287. Singapore: Springer. Doi: https://doi.org/10.1007/978-981-10-1741-4_18.

  45. Sebastian, M. T., Ubic, R., & Jantunen, H. (Eds.). (2017). Microwave materials and applications. John Wiley & Sons.

  46. Abbasi, Q. H., Nasir, A. A., Yang, K., Qaraqe, K. A., & Alomainy, A. (2017). Cooperative in vivo nano-network communication at terahertz frequencies. IEEE Access, 5, 8642–8647. https://doi.org/10.1109/ACCESS.2017.2677498

    Article  Google Scholar 

  47. Henein, M. Y., Zhao, Y., Nicoll, R., Sun, L., Khir, A. W., Franklin, K., Lindqvist, P., & Collaborators, G. R. (2011). The human heart: Application of the golden ratio and angle. International Journal of Cardiology, 150(3), 239–242. https://doi.org/10.1016/j.ijcard.2011.05.094

    Article  Google Scholar 

  48. Delgado, J. A. V., & Mera, C. A. V. (2013). A bio-inspired patch antenna array using fibonacci sequences in trees [education column]. IEEE Antennas and Propagation Magazine, 55(5), 192–201. https://doi.org/10.1109/MAP.2013.6735514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindhu Hak Gupta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This manuscript does not contain any study performed with humans or animals by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Gupta, S.H. & Kumar, B. Analyzing and Optimizing Cooperative Communication for in Vivo WBAN. Wireless Pers Commun 122, 429–450 (2022). https://doi.org/10.1007/s11277-021-08906-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08906-1

Keywords

Navigation