Skip to main content
Log in

Reconfigurable Antennas for Advanced Wireless Communications: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Modern era of wireless communication relies on the evolution of adaptive antennas. This influences the new age antenna designs to adapt themselves to the changing RF environment. Reconfigurable antennas are one such design where the operating frequency, radiation pattern, and polarization can be altered according to the user’s requirement. Numerous research works have been contributed to the design of reconfigurable antennas. In view of that, this work proposes a detailed survey on reconfigurable antennas. The key motivation behind the survey is to provide an elaborate idea on the existing reconfigurable antenna designs so that the antenna researchers can perform possible analysis to overcome shortcomings or can enhance the performance of the existing designs. The evolution of reconfigurable antennas, the need for different reconfigurations and their design specifications are presented in this survey. Further, a comparative study on different switching mechanisms, deployment of various techniques to enhance antenna performance, diverse applications and existing design challenges are also addressed as a part of this review. Hence, this survey will be useful to the researchers in developing futuristic reconfigurable radiating structures that can be well suited for applications like Cognitive Radio, 5G and Multiple Input Multiple Output systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig.21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Schaubert, D., Farrar, F., Hayes, S., & Sindoris, A. (1983). Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays. U.S. Patent No. 4,367,474. Washington, DC: U.S. Patent and Trademark Office.

  2. Bhartia, P., & Bahl, I. (1985). Broadband microstrip antennas with varactor diodes. U.S. Patent No. 4,529,987. Washington, DC: U.S. Patent and Trademark Office.

  3. Daryoush, A., Bontoz, K., & Herczfeld, P. (1986). Optically tuned patch antenna for phased array applications. IEEE AP-S International Symosium Digest, Philadelphia, PA, 361–364.

  4. Van Blaricum, M. L. (2000). A brief history of photonic antenna reconfiguration. In International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No. 00EX430) (pp. 9–12). IEEE.

  5. Elamaran, B., Chio, I. M., Chen, L. Y., & Chiao, J. C. (2000). A beam-steerer using reconfigurable PBG ground plane. In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017) (Vol. 2, pp. 835–838). IEEE.

  6. Ullah, S., Hayat, S., Umar, A., Ali, U., Tahir, F. A., & Flint, J. A. (2017). Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU-International Journal of Electronics and Communications, 81, 236–242

    Google Scholar 

  7. Kunwar, A., Gautam, A. K., & Rambabu, K. (2017). Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 71, 82–88

    Google Scholar 

  8. Peroulis, D., Sarabandi, K., & Katehi, L. P. (2001, July). A planar VHF reconfigurable slot antenna. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 1, pp. 154–157). IEEE.

  9. Messaoudene, I., Denidni, T. A., & Benghalia, A. (2013). Experimental investigations of ultra-wideband antenna integrated with dielectric resonator antenna for cognitive radio applications. Progress in Electromagnetics Research, 45, 33–42

    Article  Google Scholar 

  10. Chen, Y., Ye, L., Zhuo, J., Liu, Y., Zhang, L., Zhang, M., & Liu, Q. H. (2017). Frequency reconfigurable circular patch antenna with an arc-shaped slot ground controlled by PIN diodes. International Journal of Antennas and Propagation.

  11. Abutarboush, H. F., Nilavalan, R., Cheung, S. W., Nasr, K. M., Peter, T., Budimir, D., & Al-Raweshidy, H. (2011). A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Transactions on Antennas and Propagation, 60(1), 36–43

    Article  Google Scholar 

  12. Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 69(1), 274–280

    Google Scholar 

  13. Ali, T., Khaleeq, M. M., & Biradar, R. C. (2018). A multiband reconfigurable slot antenna for wireless applications. AEU-International Journal of Electronics and Communications, 84, 273–280

    Google Scholar 

  14. Ali, T., Fatima, N., & Biradar, R. C. (2018). A miniaturized multiband reconfigurable fractal slot antenna for GPS / GNSS / Bluetooth / WiMAX / X-band applications. AEU-International Journal of Electronics and Communications, 94, 234–243

    Google Scholar 

  15. Idris, I. H., Hamid, M. R., Kamardin, K., & Rahim, M. K. A. (2018). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), 21216

    Article  Google Scholar 

  16. Augustin, G., Chacko, B. P., & Denidni, T. A. (2013). Electronically reconfigurable uni-planar antenna for cognitive radio applications. IET Microwaves, Antennas & Propagation, 8(5), 367–376

    Article  Google Scholar 

  17. Cai, Y., Guo, Y., & Weily, A. (2010). A frequency-reconfigurable quasi-yagi dipole antenna. IEEE Antennas Wireless Propagation Letters, 9, 883–886. https://doi.org/10.1109/lawp.2010.2073436

    Article  Google Scholar 

  18. Simons, R.N., Chun, D., & Katehi, L. P. (2001, July). Reconfigurable array antenna using microelectromechanical systems (MEMS) actuators. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 3, pp. 674–677). IEEE.

  19. Kazemi, A. H., & Mokhtari, A. (2017). Graphene-based patch antenna tunable in the three atmospheric windows. Optik, 142, 475–482

    Article  Google Scholar 

  20. Dash, S., & Patnaik, A. (2017, July). Dual band reconfigurable plasmonic antenna using bilayer graphene. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 921–922). IEEE.

  21. Dash, S., & Patnaik, A. (2017, November). Graphene loaded frequency reconfigurable metal antenna. In 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM) (pp. 1–4). IEEE.

  22. Prakash, S., Dash, S., & Patnaik, A. (2018, December). Reconfigurable circular patch THz antenna using graphene stack based SIW technique. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–3). IEEE.

  23. Majumder, B., Krishnamoorthy, K., Mukherjee, J., & Ray, K. P. (2016). Frequency-reconfigurable slot antenna enabled by thin anisotropic double layer metasurfaces. IEEE Transactions on Antennas and Propagation, 64(4), 1218–1225. https://doi.org/10.1109/TAP.2016.2526081

    Article  MathSciNet  MATH  Google Scholar 

  24. Majumder, B., Kandasamy, K., Mukherjee, J., & Ray, K. P. (2015, December). Dual band dual polarized frequency reconfigurable antenna using meta-surface. In 2015 Asia-Pacific Microwave Conference (APMC) (Vol. 1, pp. 1–3). IEEE.

  25. Ajith, K. M. M., Patnaik, A., & Christodoulou, C. G. (2014). Design and testing of a multifrequency antenna with a reconfigurable feed. IEEE Antennas and Wireless Propagation Letters, 13, 730–733. https://doi.org/10.1109/LAWP.2014.2315433

    Article  Google Scholar 

  26. O, Jin, Choi. A, . (2019). Compact four-port coplanar antenna based on an excitation switching reconfigurable mechanism for cognitive radio applications. Applied Sciences, 9(15), 3157

    Article  Google Scholar 

  27. Augustin, G., & Denidni, T. A. (2012). An integrated ultra wideband/narrow band antenna in uniplanar configuration for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 60(11), 5479–5484

    Article  Google Scholar 

  28. Hamid, M. R., Gardner, P., Hall, P. S., & Ghanem, F. (2010). Reconfigurable vivaldi antenna. Microwave and Optical Technology Letters, 52(4), 785–787

    Article  Google Scholar 

  29. Al-Husseini, M., Ramadan, A., El-Hajj, A., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2011, July). Design based on complementary split-ring resonators of an antenna with controllable band notches for UWB cognitive radio applications. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1120–1122). IEEE.

  30. Zhao, D., Lan, L., Han, Y., Liang, F., Zhang, Q., & Wang, B. Z. (2014). Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications. IEEE Photonics Technology Letters, 26(21), 2173–2176

    Article  Google Scholar 

  31. Lakrit, S., Das, S., El Alami, A., Barad, D., & Mohapatra, S. (2019). A compact UWB monopole patch antenna with reconfigurable Band-notched characteristics for Wi-MAX and WLAN applications. AEU-International Journal of Electronics and Communications, 105, 106–115

    Google Scholar 

  32. Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU-International Journal of Electronics and Communications, 101, 1–8

    Google Scholar 

  33. Siddiqui, J. Y., Saha, C., & Antar, Y. M. M. (2014). Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas and Wireless Propagation Letters, 14, 100–103. https://doi.org/10.1109/LAWP.2014.2356135

    Article  MATH  Google Scholar 

  34. Kandasamy, K., Majumder, B., Mukherjee, J & Ray, K. P. (2015, July). Design of SRR loaded reconfigurable antenna for UWB and narrow band applications. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 1192–1193). IEEE.

  35. Deng, J., Hou, S., Zhao, L., & Guo, L. (2017). A reconfigurable filtering antenna with integrated bandpass filters for UWB/WLAN applications. IEEE Transactions on Antennas and Propagation, 66(1), 401–404

    Article  Google Scholar 

  36. Al-Husseini, M., Ramadan, A., Zamudio, M. E., Christodoulou, C. G., El-Hajj, A., & Kabalan, K. Y. (2011, September). A UWB antenna combined with a reconfigurable bandpass filter for cognitive radio applications. In 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (pp. 902–904). IEEE.

  37. Mansoul, A., Ghanem, F., Hamid, M. R., & Trabelsi, M. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 13, 515–518

    Article  Google Scholar 

  38. Hamid, M. R., Gardner, P., Hall, P. S., & Ghanem, F. (2011). Vivaldi antenna with integrated switchable band pass resonator. IEEE Transactions on Antennas and Propagation, 59(11), 4008–4015

    Article  Google Scholar 

  39. Boudaghi, H., Azarmanesh, M., & Mehranpour, M. (2012). A frequency-reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters, 11, 655–658

    Article  Google Scholar 

  40. Li, Y., Li, W., & Ye, Q. (2013). A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. International Journal of Antennas and Propagation.

  41. Koley, S., Bepari, D., & Mitra, D. (2015). Band-reconfigurable monopole antenna for cognitive radio applications. IETE Journal of Research, 61(4), 411–416

    Article  Google Scholar 

  42. Abdalla, M. A., Ibrahim, A. A., & Boutejdar, A. (2015). Resonator switching techniques for notched ultra-wideband antenna in wireless applications. IET Microwaves, Antennas & Propagation, 9(13), 1468–1477

    Article  Google Scholar 

  43. Hussain, R., & Sharawi, M. S. (2014). A cognitive radio reconfigurable MIMO and sensing antenna system. IEEE Antennas and Wireless Propagation Letters, 14, 257–260

    Article  Google Scholar 

  44. Shome, P. P., Khan, T., Koul, S. K., & Antar, Y. M. (2020). Compact UWB-to-C band reconfigurable filtenna based on elliptical monopole antenna integrated with bandpass filter for cognitive radio systems. IET Microwaves, Antennas & Propagation, 14(10), 1079–1088

    Article  Google Scholar 

  45. Borakhade, D. K., & Pokle, S. B. (2015). Pentagon slot resonator frequency reconfigurable antenna for wideband reconfiguration. AEU-International Journal of Electronics and Communications, 69(10), 1562–1568

    Google Scholar 

  46. Pazin, L., & Leviatan, Y. (2014). Reconfigurable rotated-T slot antenna for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 62(5), 2382–2387

    Article  Google Scholar 

  47. Ge, L., & Luk, K. M. (2016). Band-Reconfigurable Unidirectional Antenna: A simple, efficient magneto-electric antenna for cognitive radio applications. IEEE Antennas and Propagation Magazine, 58(2), 18–27

    Article  Google Scholar 

  48. Lago, H., Zakaria, Z., Jamlos, M. F., & Soh, P. J. (2019). A wideband reconfigurable folded planar dipole using MEMS and hybrid polymeric substrates. AEU-International Journal of Electronics and Communications, 99, 347–353

    Google Scholar 

  49. Erfani, E., Nourinia, J., Ghobadi, C., Niroo-Jazi, M., & Denidni, T. A. (2012). Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 11, 77–80

    Article  Google Scholar 

  50. Rajagopalan, H., Kovitz, J. M., & Rahmat-Samii, Y. (2013). MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Transactions on Antennas and Propagation, 62(3), 1056–1064

    Article  Google Scholar 

  51. Hussain, R., Raza, A., Khan, M. U., Shammim, A., & Sharawi, M. S. (2019). Miniaturized frequency reconfigurable pentagonal MIMO slot antenna for interweave CR applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(9), 21811

    Article  Google Scholar 

  52. Balanis, C. A. (2003). Smart antennas for future reconfigurable wireless communication networks. IEEE Topical Conference on Wireless Communication Technology, 181–182.

  53. Ji, J. K. (2016). Dual-band pattern reconfigurable antenna for wireless MIMO applications. ICT Express, 2(4), 199–203

    Article  Google Scholar 

  54. Shamsinejad, S., Khalid, N., Monavar, F. M., Shamsadini, S., Mirzavand, R., Moradi, G., & Mousavi, P. (2019). Pattern Reconfigurable Cubic Slot Antenna. IEEE Access, 7, 64401–64410

    Article  Google Scholar 

  55. Khairnar, V. V., Kadam, B. V., Ramesha, C. K., & Gudino, L. J. (2018). A reconfigurable parasitic antenna with continuous beam scanning capability in H-plane. AEU-International Journal of Electronics and Communications, 88, 78–86

    Google Scholar 

  56. Yin, B., & Zhang, Z. F. (2018). A novel reconfigurable radiating plasma antenna array based on Yagi antenna technology. AEU-International Journal of Electronics and Communications, 84, 221–224

    Google Scholar 

  57. Aboufoul, T., Parini, C., Chen, X., & Alomainy, A. (2013). Pattern-reconfigurable planar circular ultra-wideband monopole antenna. IEEE Transactions on Antennas and Propagation, 61(10), 4973–4980

    Article  Google Scholar 

  58. Chashmi, M. J., Rezaei, P., & Kiani, N. (2019). Reconfigurable graphene-based V-shaped dipole antenna: From quasi-isotropic to directional radiation pattern. Optik, 184, 421–427

    Article  Google Scholar 

  59. Agrawal, T., & Srivastava, S. (2018). Ku band pattern reconfigurable substrate integrated waveguide leaky wave horn antenna. AEU-International Journal of Electronics and Communications, 87, 70–75

    Google Scholar 

  60. Krishnamoorthy, K., Majumder, B., Mukherjee, J., & Ray, K. P. (2014, July). Reconfigurable zeroth order and half wave length resonator antenna for pattern reconfiguration using tunable EBG structures. In 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) (pp. 1–2). IEEE.

  61. Li, K., Cai, Y. M., Yin, Y., & Hu, W. (2019). A wideband E-plane pattern reconfigurable antenna with enhanced gain. International Journal of RF and Microwave Computer-Aided Engineering, 29(2), 21530

    Article  Google Scholar 

  62. Ashvanth, B., Partibane, B., Alsath, M., & Kalidoss, R. (2020). Gain enhanced multipattern reconfigurable antenna for vehicular communications. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22192

    Article  Google Scholar 

  63. Aboufoul, T., Alomainy, A., & Parini, C. (2013). Polarization reconfigurable ultrawideband antenna for cognitive radio applications. Microwave and Optical Technology Letters, 55(3), 501–506

    Article  Google Scholar 

  64. Yang, F., Rahmat-Samii, Y. (2002, June). Patch antenna with switchable slots (PASS): reconfigurable design for wireless communications. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 462–465). IEEE.

  65. Al-Yasir, Y. I., Abdullah, A. S., Ojaroudi Parchin, N., Abd-Alhameed, R. A., & Noras, J. M. (2018). A new polarization-reconfigurable antenna for 5G applications. Electronics, 7(11), 293

    Article  Google Scholar 

  66. dos Santos Silveira, E., Fabiani, B. M., de Pina, M. V. P., & Do Nascimento, D. C. (2018). Polarization reconfigurable microstrip phased array. AEU-International Journal of Electronics and Communications, 97, 220–228

    Google Scholar 

  67. Singh, D. K., Kanaujia, B. K., Dwari, S., & Pandey, G. P. (2018). Multi band multi polarized reconfigurable circularly polarized monopole antenna with simple biasing network. AEU-International Journal of Electronics and Communications, 95, 177–188

    Google Scholar 

  68. Sung, Y. (2018). Dual-band reconfigurable antenna for polarization diversity. International Journal of Antennas and Propagation, 2018.

  69. Fries, M. K., Gräni, M., & Vahldieck, R. (2003). A reconfigurable slot antenna with switchable polarization. IEEE Microwave and Wireless Components Letters, 13(11), 490–492

    Article  Google Scholar 

  70. Chen, C. C., Sim, C. Y. D., & Lin, H. L. (2016). Annular ring slot antenna design with reconfigurable polarization. International Journal of RF and Microwave Computer-Aided Engineering, 26(2), 110–120

    Article  Google Scholar 

  71. Chen, Q., Li, J. Y., Yang, G., Cao, B., & Zhang, Z. (2019). A polarization-reconfigurable high-gain microstrip antenna. IEEE Transactions on Antennas and Propagation, 67(5), 3461–3466

    Article  Google Scholar 

  72. Kishore, N., Prakash, A., & Tripathi, V. S. (2017). A reconfigurable ultra wide band antenna with defected ground structure for ITS application. AEU-International Journal of Electronics and Communications, 72, 210–215

    Google Scholar 

  73. Rakesh, K., Ray, K. P., & Tamang, M. (2018, December). Design of a polarisation reconfigurable antenna for coastal surveillance radar application. In 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (pp. 1–5). IEEE.

  74. Krishnamoorthy, K., Majumder, B., Mukherjee, J., & Ray, K. P. (2014, August). A circular polarization reconfigurable antenna based on reconfigurable electromagnetic band-gap structures. In 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (pp. 151–153). IEEE.

  75. Tran, H. H., & Park, H. C. (2019). Wideband polarization reconfigurable circularly polarized antenna with omnidirectional radiation pattern. International Journal of RF and Microwave Computer-Aided Engineering, 29(6), 21708

    Article  Google Scholar 

  76. Bhattacharjee, A., Dwari, S., & Mandal, M. K. (2019). Polarization-reconfigurable compact monopole antenna with wide effective bandwidth. IEEE Antennas and Wireless Propagation Letters, 18(5), 1041–1045. https://doi.org/10.1109/LAWP.2019.2908661

    Article  Google Scholar 

  77. Simons, R. N., Chun, D., & Katehi, L. P. (2002, June). Polarization reconfigurable patch antenna using microelectromechanical systems (MEMS) actuators. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 2, pp. 6–9). IEEE.

  78. Yang, L. S., Yang, L., Zhu, Y. A., Yoshitomi, K., & Kanaya, H. (2019). Polarization reconfigurable slot antenna for 5.8 GHz wireless applications. AEU-International Journal of Electronics and Communications, 101, 27–32

    Google Scholar 

  79. Wu, Z., Liu, H., & Li, L. (2019). Metasurface-inspired low profile polarization reconfigurable antenna with simple DC controlling circuit. IEEE Access, 7, 45073–45079

    Article  Google Scholar 

  80. Schaffner, J. H., Loo, R. Y., Sievenpiper, D. F., Dolezal, F. A., Tangonan, G. L., Colburn, J. S., ... & Wu, M. (2000, July). Reconfigurable aperture antennas using RF MEMS switches for multi-octave tunability and beam steering. In IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C (Vol. 1, pp. 321–324). IEEE.

  81. Huff, G. H., Feng, J., Zhang, S., & Bernhard, J. T. (2003). A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna. IEEE Microwave and Wireless Components Letters, 13(2), 57–59

    Article  Google Scholar 

  82. Selvam, Y. P., Kanagasabai, M., Alsath, M. G. N., Velan, S., Kingsly, S., Subbaraj, S., Rao, Y. R., Srinivasan, R., Varadhan, A. K., & Karuppiah, M. (2017). A low-profile frequency-and pattern-reconfigurable antenna. IEEE Antennas and Wireless Propagation Letters, 16, 3047–3050

    Article  Google Scholar 

  83. Nikolaou, S., Bairavasubramanian, R., Lugo, C., Carrasquillo, I., Thompson, D. C., Ponchak, G. E., Papapolymerou, J., & Tentzeris, M. M. (2006). Pattern and frequency reconfigurable annular slot antenna using PIN diodes. IEEE Transactions on Antennas and Propagation, 54(2), 439–448

    Article  Google Scholar 

  84. Anantha, B., Merugu, L., & Rao, P. S. (2017). A novel single feed frequency and polarization reconfigurable microstrip patch antenna. AEU-International Journal of Electronics and communications, 72, 8–16

    Google Scholar 

  85. Bharathi, A., Lakshminarayana, M., & Rao, P. S. (2017). A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications. AEU-International Journal of Electronics and Communications, 78, 15–23

    Google Scholar 

  86. Kumar, P., Dwari, S., Saini, R. K., & Mandal, M. K. (2019). Dual-band dual-sense polarization reconfigurable circularly polarized antenna. IEEE Antennas and Wireless Propagation Letters, 18(1), 64–68. https://doi.org/10.1109/LAWP.2018.2880799

    Article  Google Scholar 

  87. Ge, L., Li, Y., & Wang, J. (2017). A low-profile reconfigurable cavity-backed slot antenna with frequency, polarization, and radiation pattern agility. IEEE Transactions on Antennas and Propagation, 65(5), 2182–2189

    Article  Google Scholar 

  88. AL-Fadhali, N., Majid, H. A., Omar, R., Dahlan, S. H., Ashyap, A. Y., Shah, S. M., Rahim, M. K., & Esmail, B. A. (2020). Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22020

    Article  Google Scholar 

  89. Sharma, S., & Tripathi, C. C. (2016, December). A versatile reconfigurable antenna for cognitive radio. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1–4). IEEE.

  90. Sharma, S., Tripathi, C. C., & Rishi, R. (2018). A versatile reconfigurable antenna with integrated sensing mechanism. International Journal of Microwave and Wireless Technologies, 10(4), 469–478

    Article  Google Scholar 

  91. Sharma, S., Tripathi, C. C., & Rishi, R. (2017, September). An adaptive reconfigurable antenna for cognitive radio system. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1121–1125). IEEE.

  92. Li, Y., Li, W., & Mittra, R. (2012). Integrated dual-purpose narrow/ultra-wide band antenna for cognitive radio applications. IEEE International Symposium on Antennas and Propagation, 1–2.

  93. Ebrahimi, E., Kelly, J. R., & Hall, P. S. (2011). Integrated wide-narrowband antenna for multi-standard radio. IEEE Transactions on Antennas and Propagation, 59(7), 2628–2635

    Article  Google Scholar 

  94. Gardner, P., Hamid, M. R., Hall, P. S., Kelly, J., Glianem, F., & Ebrahimi, E. (2008). Reconfigurable Antennas for Cognitive Radio: Requirements and Potential Design Approaches. Institution of Engineering and Technology Antennas and Propagation Network, 91–94.

  95. Oliveri, G., Werner, D. H., & Massa, A. (2015). Reconfigurable electromagnetics through metamaterials—A review. Proceedings of the IEEE, 103(7), 1034–1056

    Article  Google Scholar 

  96. Haupt, R. L., & Lanagan, M. (2013). Reconfigurable antennas. IEEE Antennas and Propagation Magazine, 55(1), 49–61

    Article  Google Scholar 

  97. Shah, I. A., Hayat, S., Basir, A., Zada, M., Shah, S. A. A., & Ullah, S. (2019). Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication. AEU-International Journal of Electronics and Communications, 98, 80–88

    Google Scholar 

  98. Al-Husseini, M., El-Hajj, A., Tawk, Y., Kabalan, K. Y., & Christodoulou, C. G. (2010, June). A simple dual-port antenna system for cognitive radio applications. In 2010 International Conference on High Performance Computing & Simulation (pp. 549–552). IEEE.

  99. Yadav, R., & Patel, P. N. (2017). EBG-inspired reconfigurable patch antenna for frequency diversity application. AEU-International Journal of Electronics and Communications, 76, 52–59

    Google Scholar 

  100. Carrasquillo-Rivera, I., Popovic, Z., & Solis, R. R. (2003, June). Tunable slot antenna using varactors and photodiodes. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 4, pp. 532–535). IEEE.

  101. Mansour, G., Hall, P. S., Gardner, P., & Rahim, M. K. A. (2012, November). Tunable slot-loaded patch antenna for cognitive radio. In 2012 Loughborough Antennas & Propagation Conference (LAPC) (pp. 1–4). IEEE.

  102. Iannacci, J. (2017). RF-MEMS for high-performance and widely reconfigurable passive components–A review with focus on future telecommunications, Internet of Things (IoT) and 5G applications. Journal of King Saud University-Science, 29(4), 436–443

    Article  Google Scholar 

  103. Kiriazi, J., Ghali, H., Ragaie, H., & Haddara, H. (2003, June). Reconfigurable dual-band dipole antenna on silicon using series MEMS switches. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 1, pp. 403–406). IEEE.

  104. Anagnostou, D., Chryssomallis, M. T., Lyke, J. C., & Christodoulou, C. G. (2003, June). Re-configurable Sierpinski gasket antenna using RF-MEMS switches. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450) (Vol. 1, pp. 375–378). IEEE.

  105. Christodoulou, C. G. (2003, September). RF-MEMS and its applications to microwave systems, antennas and wireless communications. In Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference-IMOC 2003.(Cat. No. 03TH8678) (Vol. 1, pp. 525–531). IEEE.

  106. Wu, T., Li, R. L., Eom, S. Y., Lim, K., Jeon, S. I., Laskar, J., & Tentzeris, M. M. (2008, July). A multiband/scalable reconfigurable antenna for cognitive radio base stations. In 2008 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.

  107. Saha, R., Maity, S., & Bhunia, C. T. (2016). Design and characterization of a tunable patch antenna loaded with capacitive MEMS switch using CSRRs structure on the patch. Alexandria Engineering Journal, 55(3), 2621–2630

    Article  Google Scholar 

  108. Wu, T., Li, R. L., Eom, S. Y., Myoung, S. S., Lim, K., Laskar, J., & Tentzeris, M. M. (2010). Switchable quad-band antennas for cognitive radio base station applications. IEEE Transactions on Antennas and Propagation, 58(5), 1468–1476

    Article  Google Scholar 

  109. Tawk, Y., Al-Husseini, M., Hemmady, S., Albrecht, A. R., Balakrishnan, G., & Christodoulou, C. G. (2010, Septemeber). Implementation of a cognitive radio front-end using optically reconfigurable antennas. In 2010 International Conference on Electromagnetics in Advanced Applications (pp. 294–297). IEEE.

  110. Tawk, Y., Albrecht, A. R., Hemmady, S., Balakrishnan, G., & Christodoulou, C. G. (2010, July). Optically pumped reconfigurable antenna systems (OPRAS). In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.

  111. Jin, G. P., Zhang, D. L., & Li, R. L. (2011). Optically controlled reconfigurable antenna for cognitive radio applications. Electronics Letters, 47(17), 948–950

    Article  Google Scholar 

  112. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010, July). A frequency reconfigurable rotatable microstrip antenna design. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.

  113. Li, P. K., You, C. J., Yu, H. F., & Cheng, Y. J. (2017). Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application. Microwave and Optical Technology Letters, 59(10), 2526–2531

    Article  Google Scholar 

  114. Washington, G., Yoon, H. S., Angelino, M., & Theunissen, W. H. (2002). Design, modeling, and optimization of mechanically reconfigurable aperture antennas. IEEE Transactions on Antennas and Propagation, 50(5), 628–637

    Article  Google Scholar 

  115. Tawk, Y., Costantine, J., Avery, K., & Christodoulou, C. G. (2011). Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas. IEEE Transactions on Antennas and Propagation, 59(5), 1773–1778

    Article  Google Scholar 

  116. Tummas, P., Krachodnok, P., & Wongsan, R. (2014). A frequency reconfigurable antenna design for UWB applications. In 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–4). IEEE.

  117. Costantine, J., Tawk, Y., Woodland, J., Flaum, N., & Christodoulou, C. G. (2014). Reconfigurable antenna system with a movable ground plane for cognitive radio. IET Microwaves, Antennas & Propagation, 8(11), 858–863

    Article  Google Scholar 

  118. Sievenpiper, D., Schaffner, J., Loo, R., Tangonan, G., Ontiveros, S., & Harold, R. (2002). A tunable impedance surface performing as a reconfigurable beam steering reflector. IEEE Transactions on Antennas and Propagation, 50(3), 384–390

    Article  Google Scholar 

  119. Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures -Fundamentals and Applications, 10(4), 353–358

    Google Scholar 

  120. Efazat, S. S., Basiri, R., & Makki, S. V. A. D. (2019). The gain enhancement of a graphene loaded reconfigurable antenna with non-uniform metasurface in terahertz band. Optik, 183, 1179–1190

    Article  Google Scholar 

  121. Sethi, G. S., Srivastava, A., Chiu, C. Y., Chigrinov, V., & Murch, R. D. (2016, December). Design of a transparent LC based reconfigurable antenna. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1–4). IEEE.

  122. Fathy, A. E., Rosen, A., Owen, H. S., McGinty, F., McGee, D. J., Taylor, G. C., Amantea, R., Swain, P. K., Perlow, S. M., & ElSherbiny, M. (2003). Silicon-based reconfigurable antennas - concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques, 51(6), 1650–1661

    Article  Google Scholar 

  123. Langer, J. C., Zou, J., Liu, C., & Bernhard, J. T. (2003). Micromachined reconfigurable out-of-plane microstrip patch antenna using plastic deformation magnetic actuation. IEEE Microwave and Wireless Components Letters, 13(3), 120–122

    Article  Google Scholar 

  124. El Maleky, O., & Abdelouahab, F. B. (2019). A UWB antenna with reconfigurable rejection band using split ring resonator for radio cognitive technology. Procedia Manufacturing, 32, 694–701

    Article  Google Scholar 

  125. Ramadan, A. H., Costantine, J., Al-Husseini, M., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2014). Tunable filter-antennas for cognitive radio applications. Progress In Electromagnetics Research, 57, 253–265

    Article  Google Scholar 

  126. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2014). Cognitive-radio and antenna functionalities: A tutorial [Wireless Corner]. IEEE Antennas and Propagation Magazine, 56(1), 231–243

    Article  Google Scholar 

  127. Hall, P. S., Gardner, P., Kelly, J., Ebrahimi, E., Hamid, M. R., Ghanem, F., Herraiz-Martinez, F. J., & Segovia-Vargas, D. (2009, March). Reconfigurable antenna challenges for future radio systems. In 2009 3rd European Conference on Antennas and Propagation (pp. 949–955). IEEE.

  128. Rao, P. H. (2010, January). Antenna configurations for software defined radio and cognitive radio communication architecture. In 2010 International Conference on Wireless Communication and Sensor Computing (ICWCSC) (pp. 1–4). IEEE.

  129. Riaz, S., Zhao, X., & Geng, S. (2020). A frequency reconfigurable MIMO antenna with agile feedline for cognitive radio applications. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22100

    Article  Google Scholar 

  130. Cao, Y., Cheung, S. W., Sun, X. L., & Yuk, T. I. (2014). Frequency-reconfigurable monopole antenna with wide tuning range for cognitive radio. Microwave and Optical Technology Letters, 56(1), 145–152

    Article  Google Scholar 

  131. Ebrahimi, E. and Hall, P.S., (2009). A dual port wide-narrowband antenna for cognitive radio. In 2009 3rd European Conference on Antennas and Propagation (pp. 809–812). IEEE.

  132. Ghanem, F., Hall, P. S., & Kelly, J. R. (2009). Two port frequency reconfigurable antenna for cognitive radios. Electronics Letters, 45(11), 534–536

    Article  Google Scholar 

  133. Tarboush, H. A., Khan, S., Nilavalan, R., Al-Raweshidy, H. S., & Budimir, D. (2009, November). Reconfigurable wideband patch antenna for cognitive radio. In 2009 Loughborough Antennas & Propagation Conference (pp. 141–144). IEEE.

  134. Tawk, Y., & Christodoulou, C. G. (2009). A new reconfigurable antenna design for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 8, 1378–1381

    Article  Google Scholar 

  135. Sharma, S., & Tripathi, C. C. (2016). A wide spectrum sensing and frequency reconfigurable antenna for cognitive radio. Progress in Electromagnetics Research, 67, 11–20

    Article  Google Scholar 

  136. Srivastava, G., Mohan, A., & Chakrabarty, A. (2016). Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 16, 1139–1142

    Article  Google Scholar 

  137. Zhao, X., Riaz, S., & Geng, S. (2019). A Reconfigurable MIMO/UWB MIMO Antenna for Cognitive Radio Applications. IEEE Access, 7, 46739–46747

    Article  Google Scholar 

  138. Tawk, Y., Hemmady, S., Christodoulou, C. G., Costantine, J., & Balakrishnan, G. (2011, July). A cognitive radio antenna design based on optically pumped reconfigurable antenna system (OPRAS). In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1116–1119). IEEE.

  139. Al-Husseini, M., Tawk, Y., Christodoulou, C. G., Kabalan, K. Y., & El Hajj, A. (2010, July). A reconfigurable cognitive radio antenna design. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE.

  140. Heydari, S., Pedram, K., Ahmed, Z., & Zarrabi, F. B. (2017). Dual band monopole antenna based on metamaterial structure with narrowband and UWB resonances with reconfigurable quality. AEU-International Journal of Electronics and Communications, 81, 92–98

    Google Scholar 

  141. Jilani, S. F., Rahimian, A., Alfadhl, Y., & Alomainy, A. (2018). Low-profile flexible frequency-reconfigurable millimetre-wave antenna for G applications. Flexible and Printed Electronics, 3(3), 035003

    Article  Google Scholar 

  142. Parchin, N. O., Basherlou, H. J., Al-Yasir, Y. I., Ullah, A., Abd-Alhameed, R. A., & Noras, J. M. (2019). Frequency reconfigurable antenna array with compact end-fire radiators for 4G/5G mobile handsets. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 204–207). IEEE.

  143. Ikram, M., Al Abbas, E., Nguyen-Trong, N., Sayidmarie, K. H., & Abbosh, A. (2019). Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets. IEEE Transactions on Antennas and Propagation, 67(12), 7225–7233

    Article  Google Scholar 

  144. Jin, G., Deng, C., Yang, J., Xu, Y., & Liao, S. (2019). A New Differentially-Fed Frequency Reconfigurable Antenna for WLAN and Sub-6GHz 5G Applications. IEEE Access, 7, 56539–56546

    Article  Google Scholar 

  145. Liu, D., Hong, W., Rappaport, T. S., Luxey, C., & Hong, W. (2017). What will 5G antennas and propagation be? IEEE Transactions on Antennas and Propagation, 65(12), 6205–6212

    Article  Google Scholar 

  146. Hussain, R., & Sharawi, M. S. (2016). Planar meandered-F-shaped 4-element reconfigurable multiple-input–multiple-output antenna system with isolation enhancement for cognitive radio platforms. IET Microwaves, Antennas & Propagation, 10(1), 45–52

    Article  Google Scholar 

  147. Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 55(5), 218–232

    Article  Google Scholar 

  148. Fathy, A., Rosen, A., Owen, H., Kanamaluru, S., McGinty, F., McGee, D., Taylor, G., Swain, P. K., Perlow, S., & ElSherbiny, M. (2001). Silicon based reconfigurable antennas. In 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) (Vol. 1, pp. 377–380). IEEE.

  149. Sievenpiper, D., Schaffner, J., Loo, R., & Tangonan, G. (2001, September). Reconfigurable antennas based on electrically tunable impedance surfaces. In 2001 31st European Microwave Conference (pp. 1–4). IEEE.

  150. Costantine, J., Tawk, Y., Barbin, S. E., & Christodoulou, C. G. (2015). Reconfigurable antennas: Design and applications. Proceedings of the IEEE, 103(3), 424–437

    Article  Google Scholar 

  151. Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100(7), 2250–2261

    Article  Google Scholar 

  152. Del Barrio, S. C., Pelosi, M., Pedersen, G. F., & Morris, A. (2012, September). Challenges for frequency-reconfigurable antennas in small terminals. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE.

  153. Erdemli, Y. E., Volakis, J. L., Wright, D. E., & Gilbert, R. A. (2001, July). Reconfigurable conformal slot arrays on artificial substrates. In IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229) (Vol. 2, pp. 338–341). IEEE.

  154. Majidzadeh, M., Ghobadi, C., & Nourinia, J. (2016). Novel single layer reconfigurable frequency selective surface with UWB and multi-band modes of operation. AEU-International Journal of Electronics and Communications, 70(2), 151–161

    Google Scholar 

  155. Chacko, B. P., Augustin, G., & Denidni, T. A. (2014). Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 14, 213–216

    Article  Google Scholar 

  156. Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221

    Google Scholar 

  157. Chen, X., & Zhao, Y. (2018). Dual-band polarization and frequency reconfigurable antenna using double layer metasurface. AEU-International Journal of Electronics and Communications, 95, 82–87

    Google Scholar 

  158. Zhu, M., & Sun, L. (2017). Design of frequency reconfigurable antenna based on metasurface. In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1785–1788). IEEE

  159. Hall, P. S., Gardner, P., & Faraone, A. (2012). Antenna requirements for software defined and cognitive radios. Proceedings of the IEEE, 100(7), 2262–2270

    Article  Google Scholar 

  160. Vinoy, K. J., Jose, K. A., Varadan, V. K., & Varadan, V. V. (2001, May). Hilbert curve fractal antennas with reconfigurable characteristics. In 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157) (Vol. 1, pp. 381–384). IEEE.

  161. Tawk, Y., Bkassiny, M., El-Howayek, G., Jayaweera, S. K., Avery, K., & Christodoulou, C. G. (2011). Reconfigurable front-end antennas for cognitive radio applications. IET Microwaves, Antennas & Propagation, 5(8), 985–992

    Article  Google Scholar 

  162. Christodoulou, C. G. (2009). Cognitive radio: the new frontier for antenna design?. IEEE Antennas Propagation Society Feature Article.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Karthika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, K., Kavitha, K. Reconfigurable Antennas for Advanced Wireless Communications: A Review. Wireless Pers Commun 120, 2711–2771 (2021). https://doi.org/10.1007/s11277-021-08555-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08555-4

Keywords

Navigation