Skip to main content

Advertisement

Log in

Gradient Based Aura Feature Extraction for Coral Reef Classification

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Coral reefs, of all marine ecosystems, are the most diverse. They teem with life with almost a quarter of all ocean species depending upon reefs for food and shelter. Because of the immense diversity of coral reefs, they are often referred to as the ‘Rain-Forests of the Sea’. But due to the lack of consistency and objectivity in human labeling, the manual annotations of coral reefs are not conceivable. Multiple species of coral have coinciding characteristics and this makes automatic annotation, a challenging task. This research work is based on developing machine learning algorithms to employ Aura Matrix based on gradient based Cumulative Relative Difference which exploits the neighborhood relationship between pixels by comparing the relative pixel strength with respect to the center pixel. The objective of this paper is to show improvement of coral reef classification accuracy and that the proposed work outperforms the state-of-the art CNN classifiers on four coral datasets namely EILAT, EILAT 2, MLC 2010 and RSMAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foley, N., & Armstrong, C. W. (2010). The ecological and economic value of cold-water coral ecosystems. Ocean and Coastal Management, 53(7), 313–326.

    Article  Google Scholar 

  2. Gómez-Ríos, A., Tabik, S., Julián Luengo, A. S. M., Shihavuddin, B. K., & Herrera, F. (2019). Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Systems with Applications, 118, 315–328.

    Article  Google Scholar 

  3. De’ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences, 109(44), 17995–17999.

    Article  Google Scholar 

  4. Hoegh-Guldberg, O. (2004). Coral reefs in a century of rapid environmental change. Symbiosis, 37(1–3), 1–31.

    Google Scholar 

  5. www.statisticshowto.datasciencecentral.com.

  6. https://www.carbonbrief.org/severe-coral-reef-bleaching-now-five-times-more-frequent-than-40-years-ago. Retrieved February 7, 2019.

  7. Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G., & Kriegman, D. (2012). Automated annotation of coral reef survey images. In 2012 IEEE conference on computer vision and pattern recognition (pp. 1170–1177).

  8. Mehta, A., Ribeiro, E., Gilner, J., & Woesik, R. V. (2007). Coral reef texture classification using support vector machines. VISAPP, 2, 302–310.

    Google Scholar 

  9. Pizarro, O., Rigby, P., Johnson-Roberson, M., Williams, S. B., & Colquhoun, J. (2008). Towards image-based marine habitat classification. In Oceans (pp. 1–7).

  10. Purser, A., Bergmann, M., Lundälv, T., Ontrup, J., & Nattkemper, T. W. (2009). Use of machine-learning algorithms for the automated detection of cold-water coral habitats: a pilot study. Marine Ecology Progress Series, 397, 241–251.

    Article  Google Scholar 

  11. Marcos, M. S. A., David, L., Peñaflor, E., Ticzon, V., & Soriano, M. (2008). Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video. Environmental Monitoring Assess, 145, 177–184.

    Article  Google Scholar 

  12. Stokes, M., & Deane, G. (2009). Automated processing of coral reef benthic images. Limnology and Oceanography: Methods, 7(2), 157–168.

    Google Scholar 

  13. Shihavuddin, A. S. M., Gracias, N., Garcia, R., Gleason, A., & Gintert, B. (2013). Image-based coral reef classification and thematic mapping. Remote Sensing, 5, 1809–1841.

    Article  Google Scholar 

  14. Asha Paul, M., Kavitha, J., & ArockiaJansi Rani, P. (2018). Key-frame extraction techniques—A review. Recent Patents on Computer Science, 11(1), 3–16.

    Article  Google Scholar 

  15. Li, Y., Zhang, T., & Tretter, D. (2001). An overview of video abstraction techniques. Technical Report HPL-2001-191, HP Laboratory.

  16. Elfadel, I.-M., & Picard, R.-W. (1994). Gibbs random fields, co-occurrences, and texture modeling. IEEE Transaction on Pattern Analysis and Machine Intelligence, 16(1), 24–37.

    Article  Google Scholar 

  17. Qin, X., & Yang, Y.-H. (2005). Basic gray level aura matrices: theory and its application to texture synthesis. In Tenth IEEE international conference on computer vision (ICCV'05) (Vol. 1, pp. 128–135).

  18. Ullah, I., Hussain, M., Muhammad, G., Aboalsamh, H., Bebis, G., & Mirza, A. M. (2012). Gender recognition from face images with local WLD descriptor. In 2012 19th international conference on systems, signals and image processing (IWSSIP) (pp. 417–420).

  19. Haliche, Z., & Hammouche, K. (2011). The gray level aura matrices for textured image segmentation. Analog Integrated Circuits and Signal Processing, 69(1), 29–38.

    Article  Google Scholar 

  20. ZamriCordovaKhairuddinMokhtarYusof, M. I. F. A. S. N. R. (2016). Tree species classification based on image analysis using improved-basic gray level aura matrix. Computers and Electronics in Agriculture, 124, 227–233.

    Article  Google Scholar 

  21. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., et al. (2009). WLD: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1705–1720.

    Article  Google Scholar 

  22. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621.

    Article  Google Scholar 

  23. Ani, D. (2018). Coral reef image/video classification employing novel octa-angled pattern for triangular sub region and pulse coupled convolutional neural network (PCCNN). Multimedia Tools and Applications, 77(24), 31545–31579.

    Article  Google Scholar 

  24. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.

    Article  Google Scholar 

  25. https://www.reefvid.org.

  26. Shakoor, M. H., & Boostani, R. (2017). A novel advanced local binary pattern for image-based coral reef classification. Multimedia Tools and Applications, 77(2), 2561–2591.

    Article  Google Scholar 

  27. Geng, C., & Jiang, X. (2009). Face recognition using sift features. In Image processing (ICIP), 2009 16th IEEE international conference on image processing (pp. 3313–3316).

  28. Li, W., Mao, K., Zhang, H., & Chai, T. (2010). Selection of gabor filters for improved texture feature extraction. In 17th IEEE international conference on Image processing (icip) (pp. 361–364).

  29. Ani Brown Mary, N., & Dejey, D. (2017). Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (ZTZLBP). Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4981-x.

    Article  Google Scholar 

  30. Mary, A. B., & Dharma, D. (2017). Coral reef image classification employing improved LDP for feature extraction. Journal of Visual Communication and Image Representation, 4(9), 225–242.

    Article  Google Scholar 

  31. Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Peter. J. Edmunds who has provided us permission to use the MLC2010 dataset. The authors express sincere gratitude to Prof. ASM Shihavuddin for furnishing the datasets EILAT, EILAT2 RED SEA and RSMAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asha Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha Paul, M., Arockia Jansi Rani, P. & Liba Manopriya, J. Gradient Based Aura Feature Extraction for Coral Reef Classification. Wireless Pers Commun 114, 149–166 (2020). https://doi.org/10.1007/s11277-020-07355-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07355-6

Keywords

Navigation