Skip to main content
Log in

The gray level aura matrices for textured image segmentation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Inspired by an intuitive analogy that exists between the gray level textures and the miscibility in the multiphase fluids, the aura concept was developed from set theory tools in order to modeling the texture image. The gray level aura matrix (GLAM) has been then proposed to generalize the gray level cooccurrence matrix (GLCM) which remains very popular in the texture analysis. The GLAM indicates how much each gray level is present in the neighborhood of each other gray level. The neighborhood is defined by a structuring element as one used in mathematical morphology. The GLAM is mainly used and studied in synthesis and classification of textures framework but very few works are devoted to the segmentation. The aim of this paper is to exploit the GLAM for the segmentation of textured images. Experiments results over synthetic and real images show the efficiency of the GLAM. The influence of the shape and the size of the structuring element on the segmentation results are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tuceryan, M., & Jain, A. K. (1998). Texture analysis. In C. H. Chen, L. F. Pau, & P. S. P. Wang (Eds.), Chapter 2.1.The handbook of pattern recognition and computer vision (pp. 207–248). Singapore: World Scientific Publishing Co.

    Google Scholar 

  2. Djeddi, M., Ouahabi, A., Batatia, H., Basarab, A., & Kouamé, D. (2010). Discrete wavelet for multifractal texture classification: application to medical ultrasound imaging. In IEEE International Conference on Image Processing, Hong Kong.

  3. Wang, Z., Guerriero, A., & De Sario, M. (1996). Comparison of several approaches for the segmentation of texture images. Pattern Recognition Letters, 17, 509–521.

    Article  Google Scholar 

  4. Comaniciu, D., & Meer, P. (2002). Mean Shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 1–18.

    Article  Google Scholar 

  5. Cariou, K., & Chehdi, K. (2008). Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation-maximization algorithm. Pattern Recognition Letters, 29, 905–917.

    Article  Google Scholar 

  6. Kato, Z., & Pong, T.-C. (2006). A Markov random field image segmentation model for color textured images. Image and Vision Computing, 24, 1103–1114.

    Article  Google Scholar 

  7. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems Man and Cybernitics, 3(6), 610–621.

    Article  Google Scholar 

  8. Manjunath, B. S., & Chellappa, R. (1991). Unsupervised texture segmentation using Markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 478–482.

    Article  Google Scholar 

  9. Ojala, T., & Pietikainen, M. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29(1), 51–59.

    Article  Google Scholar 

  10. Jain, A. K., & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24, 1167–1186.

    Article  Google Scholar 

  11. Porter, R., & Canagarajah, N. (1996). A robust automatic clustering scheme for image segmentation using wavelets. IEEE Transaction on Image Processing, 5, 662–665.

    Article  Google Scholar 

  12. Keller, J. M., & Crownover, R. M. (1989). Texture description and segmentation through fractal geometry. CVGIP: Graphical Models and Image Processing, 45, 150–166.

    Google Scholar 

  13. Buf, J. D., Kardan, M., & Spann, M. (1990). Texture feature performance for image segmentation. Pattern Recognition, 23(3/4), 291–309.

    Article  Google Scholar 

  14. Vince, D. G., Dixon, K. J., Cothren, R. M., & Cornhill, J. F. (2000). Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Computerized Medical Imaging and Graphics, 24, 221–229.

    Article  Google Scholar 

  15. Christodoulou, C. I., Pattichis, C. S., Pantziaris, M., & Nicolaides, A. (2003). Texture-based classification of atherosclerotic Carotid Plaques. IEEE Transactions on Medical Imaging, 22(7), 902–912.

    Article  Google Scholar 

  16. Christodoulou, C. I., Michaelides, S. C., & Pattichis, C. S. (2003). Multifeature texture analysis for the classification of clouds in satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2662–2668.

    Article  Google Scholar 

  17. Elfadel, I.-M., & Picard, R.-W. (1994). Gibbs random fields, co-occurrences, and texture modeling. IEEE Transaction on Pattern Analysis and Machine Intelligence, 16(1), 24–37.

    Article  Google Scholar 

  18. Qin, X., & Yang, Y.-H. (2004). Similarity measure and learning with gray level aura matrices (GLAM) for texture image retrieval. IEEE Computer Vision and Pattern Recognition, 1, 326–333.

    Google Scholar 

  19. Qin, X., & Yang, Y.-H. (2005). Basic gray level aura matrices: theory and its application to texture synthesis. In IEEE International Conference on Computer Vision (pp. 128–135).

  20. Qin, X., & Yang, Y.-H. (2007). Aura 3D textures. IEEE Transaction on Visualization and Computer Graphics, 13(2), 379–389.

    Article  MathSciNet  Google Scholar 

  21. Syrjäsuo, M.T., Donova, E.F., Qin, X., & Yang, Y.-H. (2006). Automatic classification of auroral images in substorm studies. In International Conference on Substorms (vol. 8, pp. 309–313).

  22. Liao, S., & Chung, A. C. S. (2007). Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. International Conference on Acoustics, Speech and Signal Processing, 1, 1221–1224.

    Google Scholar 

  23. Qin, X., & Yang, Y.-H. (2006). Texture image classification using basic gray level aura matrices. http://citeseerx.ist.psu.edu .

  24. Qin, X., & Yang, Y.-H. (2005). Representing texture images using asymmetric gray level aura matrices. http://citeseerx.ist.psu.edu .

  25. Wiesmüller, S., & Chandy, D. A. (2010). Content based mammogram retrieval using gray level matrix. In Proceedings of the International Joint Journal Conference on Engineering and Technology (IJJCET 2010) (pp. 217–221).

  26. Wang, Y., Gao, X., Fu, R., & Jian, Y. (2010). Dayside corona aurora classification based on X-gray level aura matrices. In Proceedings of the ACM International Conference on Image and Video Retrieval (pp. 282–287).

  27. Brodatz, P. (1956). Texture: a photograph album for artists and designs. New York: Dover.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Hammouche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haliche, Z., Hammouche, K. The gray level aura matrices for textured image segmentation. Analog Integr Circ Sig Process 69, 29–38 (2011). https://doi.org/10.1007/s10470-011-9630-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9630-9

Keywords

Navigation