Skip to main content

Advertisement

Log in

An Offloading Mechanism Towards SE–EE Experiences Tradeoff in Heterogeneous Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To achieve a tradeoff between spectral efficiency (SE) and energy efficiency (EE) experiences, we design an offloading mechanism to maximize the sum of weighted logarithmic utilities with respect to SE and EE for heterogeneous cellular networks, where the weighting parameters are used for adjusting the SE–EE experiences. Unlike the most existing offloading mechanisms that often try to find a tradeoff between SE and EC (energy consumption), we concentrate on a tradeoff between SE–EE experiences in our mechanism. That is to say, our mechanism directly optimizes EE and is weighted in favour of SE–EE fairness. To solve the finally formulated problem in a mixed-integer and nonlinear form, we firstly make some relaxation for the optimization objective to obtain its an upper bound. Then, we perform a decoupling operation to achieve a decomposable form of dual problem. Finally, we develop a feasible algorithm that can be well implemented in a distributed manner. Numerical results show that the designed mechanism can definitely reach a tradeoff between SE–EE experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou, T., Jiang, N., Liu, Z., et al. (2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access, 6, 1894–1904.

    Article  Google Scholar 

  2. Bacha, M., Wu, Y., & Clerckx, B. (2017). Downlink and uplink decoupling in two-tier heterogeneous networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 16(5), 2760–2775.

    Article  Google Scholar 

  3. Hao, W., & Yang, S. (2018). Small cell cluster-based resource allocation for wireless backhaul in two-tier heterogeneous networks with massive MIMO. IEEE Transactions on Vehicular Technology, 67(1), 509–523.

    Article  Google Scholar 

  4. Zhou, T. Q., Huang, Y. M., Sun, Y., et al. (2017). Distributed user association with resource partitioning in heterogeneous cellular networks. Wireless Personal Communications, 95(4), 4131–4148.

    Article  Google Scholar 

  5. Zhou, T. Q., Jiang, N., Qin, D., et al. (2017). QoS-aware balanced and unbalanced associations in massive MIMO enabled heterogeneous cellular networks. Wireless Personal Communications, 97(4), 5345–5366.

    Article  Google Scholar 

  6. El-Atty, S. M. A., Gharsseldien, Z. M., Lizos, K. A., et al. (2018). Predictive reservation for handover optimization in two-tier heterogeneous cellular networks. Wireless Personal Communications, 98(2), 1637–1661.

    Article  Google Scholar 

  7. Liu, D., Wang, L., Chen, Y., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 18(2), 1018–1044.

    Article  Google Scholar 

  8. Wu, Y., Ni, K., Zhang, C., et al. (2018). NOMA-assisted multi-access mobile edge computing: A joint optimization of computation offloading and time allocation. IEEE Transactions on Vehicular Technology, 67(12), 12244–12258.

    Article  Google Scholar 

  9. Li, C. G., Song, K., Li, Y. S., et al. (2016). Energy efficient design for multiuser downlink energy and uplink information transfer in 5G. Science China Information Sciences, 59(2), 022305.

  10. Abdulkafi, A. A., Kiong, T. S., Chieng, D., et al. (2014). Energy efficiency improvements in heterogeneous network through traffic load balancing and sleep mode mechanisms. Wireless Personal Communications, 75(4), 2151–2164.

    Article  Google Scholar 

  11. Isabona, J., & Srivastava, V. M. (2017). Downlink massive MIMO systems: Achievable sum rates and energy efficiency perspective for future 5G systems. Wireless Personal Communications, 96(2), 2779–2796.

    Article  Google Scholar 

  12. Chen, X., & Hu, R Q. (2012). Joint uplink and downlink optimal mobile association in a wireless heterogeneous network. In IEEE global communications conference (GLOBECOM), Anaheim CA (pp. 4131–4137).

  13. Mlika, Z., Driouch, E., & Ajib, W. (2018). Energy-efficient base station operation and association in HetNets: Complexity and algorithms. IEEE Transactions on Wireless Communications, 17(4), 2690–2702.

    Article  Google Scholar 

  14. Son, K., Kim, H., Yi, Y., et al. (2011). Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE Journal on Selected Areas in Communications, 29(8), 1525–1536.

    Article  Google Scholar 

  15. Zhang, T., Xu, H., Liu, D., et al. (2015). User association for energy-load tradeoffs in HetNets with renewable energy supply. IEEE Communications Letters, 19(12), 2214–2217.

    Article  Google Scholar 

  16. Zhang, J., Hu, X., Ning, Z., et al. (2018). Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet of Things Journal, 5(4), 2633–2645.

    Article  Google Scholar 

  17. Hao, Y., Ni, Q., Li, H., et al. (2016). Energy and spectral efficiency tradeoff with user association and power coordination in massive MIMO enabled HetNets. IEEE Communications Letters, 20(10), 2091–2094.

    Article  Google Scholar 

  18. Hao, Y., Ni, Q., Li, H., et al. (2017). On the energy and spectral efficiency tradeoff in massive MIMO-enabled HetNets with capacity-constrained backhaul links. IEEE Transactions on Communications, 65(11), 4720–4733.

    Article  Google Scholar 

  19. Oo, T. Z., Tran, N. H., Saad, W., et al. (2017). Offloading in HetNet: A coordination of interference mitigation, user association, and resource allocation. IEEE Transactions on Mobile Computing, 16(8), 2276–2291.

    Article  Google Scholar 

  20. Qian, L. P., Zhang, Y. J., Wu, Y., et al. (2013). Joint base station association and power control via benders’ decomposition. IEEE Transactions on Wireless Communications, 12(4), 1651–1665.

    Article  Google Scholar 

  21. Moon, S., Kim, H., & Yi, Y. (2016). Brute: Energy-efficient user association in cellular networks from population game perspective. IEEE Transactions on Wireless Communications, 15(1), 663–675.

    Article  Google Scholar 

  22. Mesodiakaki, A., Adelantado, F., Alonso, L., et al. (2017). Energy- and spectrum-efficient user association in millimeter-wave backhaul small-cell networks. IEEE Transactions on Vehicular Technology, 66(2), 1810–1821.

    Article  Google Scholar 

  23. Boyd, S., Xiao, L., & Mutapcic, A . (2003). Subgradient methods. Retrieved October, 2003, from http://web.mit.edu/6.976/www/notes/subgradmethod.pdf.

  24. Zhou, T., Liu, Z., Zhao, J., et al. (2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 67(3), 2582–2593.

    Article  Google Scholar 

  25. Wang, W., & Shen, G . (2010). Energy efficiency of heterogeneous cellular network. In IEEE 72nd vehicle technologies conference (VTC-Fall), Ottawa Canada (pp. 1–5).

  26. Ye, Q., Rong, B., Chen, Y., et al. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. 61861017, 61861018, 61761019, 61761030, 61862024, 61862025 and 61671144, Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects Under Grant No. 20172BCB22017, China Postdoctoral Science Foundation under Grant No. 2017M622103, Natural Science Foundation of Jiangxi Province of China under Grant Nos. 20181BAB211013, 20181BAB211016 and 20181BAB211014, and Foundation of Jiangxi Educational Committee of China under Grant No. GJJ170414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqing Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

According to the principle of subgradient method, we have

$$\begin{aligned} \left\| {{\varvec{\lambda }}^{t+1}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}=&\left\| {{\varvec{\lambda }}^{t}}-\xi {\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{t} \right) }-{{\varvec{\lambda } }^{o}} \right\| _{2}^{2} \\ =&\left\| {{\varvec{\lambda }}^{t}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}-2\xi {{\left( {\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{t} \right) } \right) }^{T}}\left( {{\varvec{\lambda }}^{t}}-{{\varvec{\lambda }}^{o}} \right) +{{\xi }^{2}}\left\| {\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{t} \right) } \right\| _{2}^{2} \\ \overset{a}{\mathop \leqslant }&\left\| {{\varvec{\varvec{\lambda }}}^{t}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}-2\xi \left( {\mathcal {H}}\left( {{\varvec{\lambda }}^{t}} \right) -{{{\mathcal {H}}}^{o}} \right) +{{\xi }^{2}}\left\| {\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{t} \right) } \right\| _{2}^{2},\end{aligned}$$
(20)

where \(\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{t} \right)\) represents the subgradient of \({\mathcal {H}}\) at tth iteration; a follows from the definition of subgradient.

By applying the inequality (20) recursively, we finally have

$$\left\| {{\varvec{\lambda }}^{t+1}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2} \leqslant \left\| {{\varvec{\lambda }}^{1}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}+{{\xi }^{2}}\sum \limits _{i=1}^{t}{\left\| {\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{i} \right) } \right\| _{2}^{2}}-2\xi \sum \limits _{i=1}^{t}{\left( {\mathcal {H}}\left( {{\varvec{\lambda }}^{i}} \right) -{{{\mathcal {H}}}^{o}} \right) }$$
(21)

Evidently, \(\left\| {{\varvec{\lambda }}^{t+1}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}\geqslant 0\), and thus we have

$$2\xi \sum \limits _{i=1}^{t}{\left( {\mathcal {H}}\left( {{\varvec{\lambda }}^{i}} \right) -{{{\mathcal {H}}}^{o}} \right) }\leqslant \left\| {{\varvec{\lambda }}^{1}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}+{{\xi }^{2}}\sum \limits _{i=1}^{t}{\left\| {\nabla {\mathcal {H}}\left( {\varvec{\lambda }}^{i} \right) } \right\| _{2}^{2}}.$$
(22)

By combining it with

$$\begin{aligned} \sum \limits _{i=1}^{t}{\left( {\mathcal {H}}\left( {{\varvec{\lambda }}^{i}} \right) -{{{\mathcal {H}}}^{o}} \right) }&\geqslant t\underset{i\in \left\{ 1,2,\ldots ,t \right\} }{\mathop {\min }}\,\left( {\mathcal {H}}\left( {{\varvec{\lambda }}^{i}} \right) -{{{\mathcal {H}}}^{o}} \right) =t\left( {{\overline{{\mathcal {H}}}}_{t}}-{{{\mathcal {H}}}^{o}} \right) ,\end{aligned}$$
(23)

we have

$$\begin{aligned} {{\overline{{\mathcal {H}}}}_{t}}-{{{\mathcal {H}}}^{o}}=&\underset{i\in \left\{ 1,2,\ldots ,t \right\} }{\mathop {\min }}\,{\mathcal {H}}\left( {{\varvec{\lambda }}^{i}} \right) -{{{\mathcal {H}}}^{o}}\leqslant {{\beta }_{1}}{{\left\| {{\varvec{\lambda }}^{1}}-{{\varvec{\lambda }}^{o}} \right\| _{2}^{2}}}+{{\beta }_{2}}. \end{aligned}$$
(24)

Until now, we have established the proof of Lemma 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Liu, Z., Qin, D. et al. An Offloading Mechanism Towards SE–EE Experiences Tradeoff in Heterogeneous Cellular Networks. Wireless Pers Commun 111, 2477–2491 (2020). https://doi.org/10.1007/s11277-019-06999-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06999-3

Keywords

Navigation