Skip to main content
Log in

FdICIC: Inter-cell Interference Coordination for Full-Duplex Cellular Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the inter-cell interference coordination (ICIC) for heterogeneous networks (HetNets) with full-duplex (FD) small cell base stations to maximize the overall system throughput. To be compatible with the enhanced ICIC (eICIC) and the further enhanced ICIC (FeICIC) of existing LTE standards, the proposed FdICIC technique adopts cell range expansion and almost blank subframe to deal with the complicated interference scenario in such FD HetNets. In detail, the FdICIC includes four steps, namely, choosing the serving base station, pairing users for FD communication, resource block (RB) allocation, and power control of FD users. Through numerical simulation, we demonstrate that: (1) the overall system throughput can be improved by 10–25% with four FD small cell base stations when the residual self-interference is between − 130 to − 110 dB, (2) by carefully selecting the CRE bias, the overall system throughput can be further improved by about 30%, (3) the proposed user pairing, RB allocation, and power control steps have significant contributions to the performance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim, D., Lee, H., & Hong, D. (2015). A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers. IEEE Communications Surveys & Tutorials, 17(4), 2017–2046.

    Article  Google Scholar 

  2. Sabharwal, A., Schniter, P., Guo, D., Bliss, D., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.

    Article  Google Scholar 

  3. Goyal, S., Liu, P., Panwar, S., Difazio, R., Yang, R., & Bala, E. (2015). Full duplex cellular systems: Will doubling interference prevent doubling capacity. IEEE Communications Magazine, 53(5), 121–127.

    Article  Google Scholar 

  4. Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks. In IEEE INFOCOM (pp. 253–261).

  5. Lee, J., & Quek, T. (2015). Hybrid full-/half-duplex system analysis in heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 14(5), 2883–2895.

    Google Scholar 

  6. Bai, J., & Sabharwal, A. (2012). Distributed full-duplex via wireless side-channels: Bounds and protocols. IEEE Transactions on Wireless Communications, 12(8), 4162–4173.

    Article  Google Scholar 

  7. Wen, D., & Yu, G. (2016). Time-division cellular networks with full-duplex base stations. IEEE Communications Letters, 20(2), 392–395.

    Article  Google Scholar 

  8. Yu, G., Wen, D., & Qu, F. (2016). Joint user scheduling and channel allocation for cellular networks with full duplex base stations. IET Communications, 10(5), 479–486.

    Article  Google Scholar 

  9. Mairton, J., Fodor, G., & Fischione, C. (2016). Spectral efficient and fair user pairing for full-duplex communication in cellular networks. IEEE Transactions on Wireless Communications, 15(11), 7578–7593.

    Article  Google Scholar 

  10. Wen, D., & Yu, G. (2016). Full-duplex and half-duplex: Power efficiency comparison. Electronics Letters, 52(6), 483–485.

    Article  Google Scholar 

  11. Wen, D., Yu, G., Li, R., Chen, Y., & Li, G. Y. (2017). Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations. IEEE Transactions on Wireless Communications, 16(3), 1494–1507.

    Article  Google Scholar 

  12. Sanjay, G., Liu, P., & Shivendra, P. (2017). User selection and power allocation in full-duplex multi-cell networks. IEEE Transactions on Vehicular Technology, 66(3), 2408–2422.

    Article  Google Scholar 

  13. Yun, J. H. (2016). Intra and inter-cell resource management in full-duplex heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 15(2), 392–405.

    Article  Google Scholar 

  14. Wang, S., Vignesh, V., & Zhang, X. (2015). Exploring full-duplex gains in multi-cell wireless networks: A spatial stochastic framework. In IEEE INFOCOM (pp. 855–863).

  15. Chandan, P., & Garimella, M. (2016). Full-duplex communication for future wireless networks: Dynamic resource block allocation approach. Physical Communication, 19(5), 61–69.

    Google Scholar 

  16. Can, K., & Suhas, D. (2015). Opportunistic scheduling for full-duplex uplink-downlink networks. In IEEE ISIT (pp. 1019–1023).

  17. Mohammad, K., Amir, A., Karthikeyan, S., Sampath, R., & Mohammad, F. (2015). Scaling wireless full-duplex in multi-cell networks. In IEEE INFOCOM (pp. 1751–1759).

  18. Vasudevan, S., Pupala, R. N., & Sivanesan, K. (2013). Dynamic eICIC—A proactive strategy for improving spectral efficiencies of heterogeneous LTE cellular networks by leveraging user mobility and traffic dynamics. IEEE Transactions on Wireless Communications, 12(10), 4956–4969.

    Article  Google Scholar 

  19. Dania, M., Giulio, B., Romano, F., & Marco, P. (2016). An optimized CoMP transmission for a heterogeneous network using eICIC approach. IEEE Transactions on Vehicular Technology, 65(10), 8230–8239.

    Article  Google Scholar 

  20. Alfarhan, F., Lerbour, R., & Le, Y. (2015). An optimization framework for LTE eICIC and reduced power eICIC. In IEEE Globecom (pp. 1–6).

  21. Hu, H., Weng, J., & Zhang, J. (2016). Coverage performance analysis of FeICIC low power subframes. IEEE Transactions on Wireless Communications, 15(8), 5603–5614.

    Article  Google Scholar 

  22. West, D. (2001). Introduction to graph theory. Upper Saddle River: Prentice Hall.

    Google Scholar 

  23. Han, Z., Ji, Z., & Liu, K. (2005). Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376.

    Article  Google Scholar 

  24. Yaiche, H., Mazumdar, R., & Rosenberg, C. (2000). A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions On Networking, 8(5), 667–678.

    Article  Google Scholar 

  25. Gao, L., Iosifidis, G., Huang, J., Tassiulas, L., & Li, D. (2014). Bargaining-based mobile data offloading. IEEE Journal on Selected Areas in Communications, 32(6), 1114–1125.

    Article  Google Scholar 

  26. Feng, D., Lu, L., Wu, Y., Li, G., Feng, G., & Li, S. (2013). Device-to-device communications underlaying cellular networks. IEEE Transactions on Communications, 61(8), 3541–3551.

    Article  Google Scholar 

  27. Gjendemsjo, A., Gesbert, D., Oien, G., & Kiani, S. (2006). Optimal power allocation and scheduling for two-cell capacity maximization. In IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihan Zhang.

Appendices

Appendix 1: Proof of Theorem 1

Setting the first derivative of \({{\tilde{z}}^{NBS}}\) in (19) on \(\beta _m\) to 0, we can derive that

$$\begin{aligned} {\beta _{m}}&= l - {Q_l} + Q_m^F, \end{aligned}$$
(31)
$$\begin{aligned} \phi _{j}&= l - {Q_l} + Q_j^H. \end{aligned}$$
(32)

Then we have

$$\begin{aligned} \beta _{m} = \dfrac{1}{2}\left[ {K -Q_l- \sum \limits _{{m_1 = 1,m_1} \ne {m}}^M {{ \beta _{m_1}}}-\sum \limits _{j = 1}^J {\phi _j+Q_m^F} } \right] , \quad\,\forall m \in M . \end{aligned}$$
(33)

Similarly, the optimal \(\phi _j\) has a closed-form expression of

$$\begin{aligned} \phi _{j} = \dfrac{1}{2}\left[ {K - Q_l -\sum \limits _{{j_1 = 1,j_1} \ne j}^J {{\phi _{j_1}}} - \sum \limits _{m = 1}^M {\beta _m + Q_j^H} } \right] , \quad \forall j \in J . \end{aligned}$$
(34)

Then, summating both sides of (33) from \(m = 1\) to M and (34) from \(j = 1\) to J, we can get

$$\begin{aligned} (M + 1)\sum \limits _{m = 1}^M {{\beta _m}}&= M\left[ {K - \sum \limits _{j = 1}^J {{\phi _j}} - {Q_l}} \right] + \sum \limits _{m = 1}^M {Q_m^F}, \end{aligned}$$
(35)
$$\begin{aligned} (J + 1)\sum \limits _{j = 1}^J {{\phi _j}}&= J\left[ {K - \sum \limits _{m = 1}^M {{\beta _m}} - {Q_l}} \right] + \sum \limits _{j = 1}^J {Q_j^H}. \end{aligned}$$
(36)

Therefore, we can finally get the solution of l as

$$\begin{aligned} l^* = \dfrac{{K + (M + J){Q_l} - \sum \nolimits _{j = 1}^J {Q_j^H - \sum \nolimits _{m = 1}^M {Q_m^F} } }}{{M + J + 1}}. \end{aligned}$$
(37)

Substituting l to \(\beta _m\) and \(\phi _j\), we have

$$\begin{aligned} {\beta _m^*}&= \dfrac{1}{{M + J + 1}}\left( K - {Q_l} - \sum \limits _{m = 1}^M {Q_m^F - \sum \limits _{j = 1}^J {Q_j^H}}\right) + Q_m^F, \end{aligned}$$
(38)
$$\begin{aligned} {\phi _j^*}&= \dfrac{1}{{M + J + 1}}\left( K - {Q_l} - \sum \limits _{m = 1}^M {Q_m^F - \sum \limits _{j = 1}^J {Q_j^H } }\right) + Q_j^H. \end{aligned}$$
(39)

In a similar way, we can respectively get the optimal RB allocation results for the FD CRE user pair m and HD CRE user j, as

$$\begin{aligned} {\beta ^*_{m,CRE}}&= \dfrac{1}{{M_0 + J_0 }}\left( l^*- \sum \limits _{m = 1}^{M_0} {Q_m^F - \sum \limits _{j = 1}^{J_0} {Q_j^H}} \right) + Q_m^F, \end{aligned}$$
(40)
$$\begin{aligned} {\phi ^*_{j,CRE}}&= \dfrac{1}{{M_0 + J_0 }}\left( l^* - \sum \limits _{m = 1}^{M_0} {Q_m^F - \sum \limits _{j = 1}^{J_0} {Q_j^H }}\right) + Q_j^H. \end{aligned}$$
(41)
Fig. 8
figure 8

Optimal power allocation for FD user pair

Appendix 2: Proof of Theorem 2

The aggregate data rate of a FD user pair (ij) on the kth RB can be rewritten as

$$\begin{aligned} R_{i,j,k}=\log _2\left( 1+\xi ^{\mathrm{U}}_{i,k}\right) +\log _2\left( 1+\xi ^{\mathrm{D}}_{j,k}\right) , \end{aligned}$$
(42)

where \(\xi ^{\mathrm{U}}_{i,k}\) and \( \xi ^{\mathrm{D}}_{j,k}\) are the SINR for uplink user i and downlink user j on the kth RB, respectively. Now we take into account the QoS of each uplink user and downlink user, which can be respectively expressed as

$$\begin{aligned} \xi ^{\mathrm{U}}_{i,k}&= \dfrac{{p_{i,k}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{\sigma _0^2+ p_{j,k}^{\mathrm{D}}{\eta } }} \ge \xi ^{\mathrm{U}}_{i,\mathrm{min}} , \end{aligned}$$
(43)
$$\begin{aligned} \xi ^{\mathrm{D}}_{j,k}&= \dfrac{{p_{j,k}^{\mathrm{D}}h_j^{\mathrm{D}}}}{{\sigma _0^2 + p_{i,k}^{\mathrm{U}}{h_{i,j}} }} \ge \xi ^{\mathrm{D}}_{j,\mathrm{min}} . \end{aligned}$$
(44)

According to [26], the feasible power region can be illustrated in Fig. 8, where lines \(l_U\) and \(l_D\) represent (43) and (44), respectively. There are only three situations for all possible FD user pairs, as in Fig. 8I–III. From Fig. 8, it is necessary that the slope of \(l_D\) must be larger than that of \(l_U\), which leads to the following admission control criterion

$$\begin{aligned} \dfrac{{\xi _{i,\mathrm{min}}^{\mathrm{U}}\eta }}{{h_i^{\mathrm{U}}}} < \frac{{h_j^{\mathrm{D}}}}{{\xi _{j,\mathrm{min}}^{\mathrm{D}}{h_{i,j}}}}. \end{aligned}$$
(45)

Then we analyze the optimal power allocation of each FD user pair that satisfies the admission control criterion.

We first prove that for any given power pair \((p^{\mathrm{U}}_{i,k}, p^{\mathrm{D}}_{j,k} )\) in the interior of the feasible power region, there always exists another power pair \((\alpha p^{\mathrm{U}}_{i.k}, \alpha p^{\mathrm{D}}_{j,k} )\) (\(\alpha >1\)) in the admissible area so that the throughput can be further improved, since

$$\begin{aligned} \begin{aligned}&R\left( \alpha p_{i,k}^{\mathrm{U}},\alpha p_{j,k}^{\mathrm{D}}\right) = {\log _2}\left( 1 + \dfrac{{\alpha p_{i,k}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{{\sigma _0^2} + \alpha p_{j,k}^{\mathrm{D}}\eta }}\right) + {\log _2}\left( 1 + \dfrac{{\alpha p_{j,k}^{\mathrm{D}}h_j^{\mathrm{D}}}}{{{\sigma _0^2} + \alpha p_{i,k}^{\mathrm{U}}{h_{i,j}}}}\right) \\&\quad = {\log _2}\left( 1 + \dfrac{{p_{i,k}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{{\sigma _0^2}/\alpha + p_{j,k}^{\mathrm{D}}\eta }}\right) + {\log _2}\left( 1 + \dfrac{{p_{j,k}^{\mathrm{D}}h_j^{\mathrm{D}}}}{{{\sigma _0^2}/\alpha + p_{i,k}^{\mathrm{U}}{h_{i,j}}}}\right) \\&\quad > {\log _2}\left( 1 + \dfrac{{p_{i,k}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{{\sigma _0^2} + p_{j,k}^{\mathrm{D}}\eta }}\right) + {\log _2}\left( 1 + \dfrac{{p_{j,k}^{\mathrm{D}}h_j^{\mathrm{D}}}}{{{\sigma _0^2} + p_{i,k}^{\mathrm{U}}{h_{i,j}}}}\right) \\&\quad = R\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) . \end{aligned} \end{aligned}$$
(46)

This implies that the optimal power pair \((p_{i,k}^{U*},p_{j,k}^{D*})\) must lay at the boundary of the feasible power area, i.e., \(p_{i,k}^{U*}=P^{\mathrm{U}}_{MAX}\) or \(p_{j,k}^{D*}=P^{\mathrm{D}}_{MAX}\).

For situation I, the power pair \((P^{\mathrm{U}}_{MAX},P^{\mathrm{D}}_{MAX})\) does not fall in the feasible power region, and

$$\begin{aligned} \dfrac{{P_{MAX}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{{\sigma _0^2} + P_{MAX}^{\mathrm{D}}\eta }} \le \xi ^{\mathrm{U}}_{i,\mathrm{min}}. \end{aligned}$$
(47)

From the above conclusion, the optimal power pair must lay at line BC. According to [27], it is proved that \(R_{i,j,k}\) is a convex function on \((p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}} )\) when the other variable, \(p_{j,k}^{\mathrm{D}}\) or \(p_{i,k}^{\mathrm{U}}\), is fixed at its maximum value. Therefore, the optimal power pair must lay at the end point B or C. Then the optimal power allocation for situation I can be expressed as

$$\begin{aligned} \left( p_{i,k}^{U * },p_{j,k}^{D * }\right) = \begin{array}{l} \arg \mathop {\max }\limits _{\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) \in {\psi _1}} {\mathrm{}}f\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) \end{array} , \end{aligned}$$
(48)

where \({\psi _1}\) is given in (30).

For situation II, the power pair \((P^{\mathrm{U}}_{MAX},P^{\mathrm{D}}_{MAX})\) also does not fall in the feasible power region, and

$$\begin{aligned} \dfrac{{P_{MAX}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{{\sigma _0^2} + P_{MAX}^{\mathrm{D}}\eta }} > \xi ^{\mathrm{U}}_{i,\mathrm{min}}, \quad \dfrac{{P_{MAX}^{\mathrm{D}}h_j^{\mathrm{D}}}}{{{\sigma _0^2} + P_{MAX}^{\mathrm{U}}{h_{i,j}}}} \le \xi ^{\mathrm{D}}_{j,\mathrm{min}}. \end{aligned}$$
(49)

Therefore, the optimal pair must lay at the end point E or F. Then the optimal power allocation for this situation can be expressed as

$$\begin{aligned} \arg \mathop {\max }\limits _{\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) \in {\psi _2}} {\mathrm{}}f\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) , \end{aligned}$$
(50)

where \({\psi _2}\) is given in (30).

For situation III, the power pair \((P^{\mathrm{U}}_{MAX},P^{\mathrm{D}}_{MAX})\) sits in the feasible power region, i.e.,

$$\begin{aligned} \dfrac{{P_{MAX}^{\mathrm{U}}h_i^{\mathrm{U}}}}{{{\sigma _0^2} + P_{MAX}^{\mathrm{D}}\eta }}> \xi ^{\mathrm{U}}_{i,\mathrm{min}}, \quad \dfrac{{P_{MAX}^{\mathrm{D}}h_j^{\mathrm{D}}}}{{{\sigma _0^2} + P_{MAX}^{\mathrm{U}}{h_{i,j}}}} >\xi ^{\mathrm{D}}_{j,\mathrm{min}}. \end{aligned}$$
(51)

Therefore, the optimal pair must lay at the end point B, E, or F. Then the optimal power allocation for situation III can be expressed as

$$\begin{aligned} \arg \mathop {\max }\limits _{\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) \in {\psi _3}} {\mathrm{}}f\left( p_{i,k}^{\mathrm{U}},p_{j,k}^{\mathrm{D}}\right) , \end{aligned}$$
(52)

where \({\psi _3}\) is given in (30).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yu, G. FdICIC: Inter-cell Interference Coordination for Full-Duplex Cellular Systems. Wireless Pers Commun 101, 1–22 (2018). https://doi.org/10.1007/s11277-018-5627-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5627-3

Keywords

Navigation