Skip to main content
Log in

Channel Correlation Based Zero-Forcing Beamforming in Two-User MISO Broadcast Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel zero-forcing beamforming (ZFBF) is presented for the two-user multiple input single output broadcast channel. Based on the knowledge of channel correlations at the transmitter side, a nonlinear optimization problem is formulated to determine the beamformers so that the weighted ergodic sum-rate is maximized subject to avoiding multi-user interference and meeting a total power constraint. By factorizing each beamformer, the original complicated problem can be transformed into a simpler one. Numerical results show that the performance gap between the proposed ZFBF and the traditional instantaneous channel state information based ZFBF is within 1.5 bits per transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennatan, A., Burshtein, D., Caire, G., & Shamai, S. (2006). Superposition coding for side-information channels. IEEE Transactions on Information Theory, 52(5), 1872–1889.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D. (1995). Nonlinear programming. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  3. Biglieri, E., Calderbank, R., Constantinides, T., Goldsmith, A., Paulraj, A., & Poor, H. (2007). MIMO wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  4. Bjornson, E., Zakhour, R., Gesbert, D., & Ottersten, B. (2010). Cooperative multicell precoding: Rate region characterization and distributed strategies with instantaneous and statistical CSI. IEEE Transactions on Signal Processing, 58(8), 4298–4310.

    Article  MathSciNet  Google Scholar 

  5. Caire, G., & Shamai, S. (2003). On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory, 49, 1691–1706.

    Article  MathSciNet  MATH  Google Scholar 

  6. Caire, G., Jindal, N., Kobayashi, M., & Ravindran, N. (2010). Multiuser MIMO achievable rates with downlink training and channel state feedback. IEEE Transactions on Information Theory, 56(6), 2845–2866.

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeffrey, A., & Zwillinger, D. (2007). Table of integrals, series, and products (7th ed.). Amsterdam: Academic.

    Google Scholar 

  8. Kobayashi, M., & Caire, G. (2006). An iterative water-filling algorithm for maximum weighted sum-rate of Gaussian MIMO-BC. IEEE Journal on Selected Areas in Communications, 24(8), 1640–1646.

    Article  Google Scholar 

  9. Lau, V. K. N., & Kwok, Y. K. (2006). Channel adaptation technologies and cross layer designs for multi-antenna wireless systems. Cambridge: Wiley.

    Book  Google Scholar 

  10. Liang, Y. C., Chin, F. P., & Liu, K. R. (2001). Downlink beamforming for DS-CDMA mobile radio with multimedia services. IEEE Transactions on Communications, 49(7), 1288–1298.

    Article  MATH  Google Scholar 

  11. Raghavan, V., Hanly, S. V., & Veeravalli, V. V. (2013). Statistical beamforming on the Grassmann manifold for the two-user broadcast channel. IEEE Transactions on Information Theory, 59(10), 6464–6489.

    Article  MathSciNet  MATH  Google Scholar 

  12. Salzer, T., & Mottier, D. (2005). On spatial covariance matrices for downlink eigen-beamforming in multi-carrier CDMA. In Proceedings of the IEEE ICASSP’05 (pp. 1133–1136).

  13. Shanechi, M., Porat, R., & Erez, U. (2010). Comparison of practical feedback algorithms for multiuser MIMO. IEEE Transactions on Communications, 58(8), 2436–2447.

    Article  Google Scholar 

  14. Shiu, D. S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multi-element antenna systems. IEEE Transactions on Communications, 48, 502–513.

    Article  Google Scholar 

  15. Veeravalli, V. V., Liang, Y., & Sayeed, A. M. (2005). Correlated MIMO Rayleigh fading channels: Capacity, optimal signaling and asymptotics. IEEE Transactions on Information Theory, 51(6), 2058–2072.

    Article  MathSciNet  MATH  Google Scholar 

  16. Visotsky, E., & Madhow, U. (2001). Space-time transmit precoding with imperfect feedback. IEEE Transactions on Information Theory, 47(6), 2632–2639.

    Article  MATH  Google Scholar 

  17. Wang, J., Jin, S., & Gao, X. (2012). Statistical eigenmode-based SDMA for two-user downlink. IEEE Transactions on Signal Processing, 60(10), 5371–5383.

    Article  MathSciNet  Google Scholar 

  18. Yu, Y., Petropulu, A. P., & Poor, H. V. (2011). Measurement matrix design for compressive sensing-based MIMO radar. IEEE Transactions on Signal Processing, 59(11), 5338–5352.

    Article  MathSciNet  Google Scholar 

  19. Zhou, S., & Giannakis, G. B. (2003). Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations. IEEE Transactions on Information Theory, 49(7), 1673–1690.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61431011 and the Ph.D. Programs Foundation of Ministry of Education of China (young scholars) (Grant No. 20120201120020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Appendix

Appendix

1.1 Proof of Lemma 1

By denoting \(a_{1n}=\gamma \rho \delta _{1n}\), \(Z_{1}\,\triangleq\,\sum ^{n_{1}}_{n=1} a_{1n} \Big |[\tilde{{\mathbf {h}}}^{'}_{i}]_n\Big |^2\) is defined. Because the characteristic function of the PDF of the sum of several independent random variables is the product of their respective characteristic functions, given the PDF of \(z_{1n}\,\triangleq\,a_{1n} \Big |[\tilde{{\mathbf {h}}}^{'}_{i}]_n\Big |^2\)

$$\begin{aligned} f(z_{1n})=\left\{ \begin{array}{ll} \frac{1}{a_{1n}}e^{-\frac{1}{a_{1n}}z_{1n}} &\quad z_{1n}\ge 0\\ {0} &\quad z_{1n}<0,\\ \end{array}\right.\end{aligned}$$

we have the following one-to-one correspondences:

$$\begin{aligned} f(z_{1n}) &\longrightarrow \varphi (t)=\frac{\frac{1}{a_{1n}}}{\frac{1}{a_{1n}}-jt},\\ f(z_{1}) &\longrightarrow \varphi (t)=\prod _{n=1}^{n_{1}} \frac{\frac{1}{a_{1n}}}{\frac{1}{a_{1n}}-jt} \overset{(a)}{=}\sum _{n=1}^{n_{1}}\frac{A_{1n}}{\frac{1}{a_{1n}}-jt}. \end{aligned}$$

where \(f(z_{1})\) and \(\varphi (t)\) respectively denote the PDF of \(Z_{1}\) and their characteristic functions. Here

$$\begin{aligned} A_{1n}=\frac{\prod ^{n_{1}}_{\tilde{n}=1}\frac{1}{a_{1\tilde{n}}}}{\prod ^{n_{1}}_{\tilde{n}\ne n}\big (\frac{1}{a_{1\tilde{n}}}-\frac{1}{a_{1n}}\big )} \end{aligned}$$

in (a) is calculated according to the partial fraction expansion method. Then with the definition of characteristic function,

$$\begin{aligned} f(z_{1})=\left\{ \begin{array}{ll} \sum ^{n_{1}}_{n=1}A_{1n} e^{-\frac{1}{a_{1n}}z_{1}} &\quad z_{1}\ge 0\\ {0} &\quad z_{1}<0\\ \end{array}\right. \end{aligned}$$
(14)

is obtained. Thereafter,

$$\begin{aligned}&{\text {E}}\big \{\log \left( 1+\gamma \rho \alpha _1\right) \big \}=\int ^{+\infty }_{-\infty }\log _2(1+z_{1})f_{z_{1}}(z_{1}) dz_{1}\nonumber \\&\quad =\sum \limits _{n=1}^{n_{1}}\frac{A_{1n}}{\ln 2}\int ^{\infty }_{0}\ln (1+z_{1}) e^{-\frac{1}{a_{1n}}z_{1}}dz_{1}\nonumber \\&\quad =\sum \limits _{n=1}^{n_{1}}\frac{-A_{1n} a_{1n}}{\ln 2}e^{\frac{1}{a_{1n}}}Ei\left( -\frac{1}{a_{1n}}\right) \end{aligned}$$
(15)

where \(\int ^{\infty }_{0}e^{-\mu x} \ln (1+x)dx=-\frac{1}{\mu }e^{\mu }Ei(-\mu )\) in [7] is utilized. Similarly, with the definitions \(a_{2n}=\left( 1-\gamma \right) \rho \delta _{2n}\) and \(A_{2n}=\frac{\prod ^{n_{2}}_{\tilde{n}=1}\frac{1}{a_{2\tilde{n}}}}{\prod ^{n_{2}}_{\tilde{n}\ne n}\big (\frac{1}{a_{2\tilde{n}}}-\frac{1}{a_{2n}}\big )}\), we derive

$$\begin{aligned} {\text {E}}\big \{\log \big (1+(1-\gamma )\rho \alpha _2\big )\big \} =\sum ^{n_{2}}_{n=1}\frac{-A_{2n} a_{2n}}{\ln 2}e^{\frac{1}{a_{2n}}}Ei\left( -\frac{1}{a_{2n}}\right) . \end{aligned}$$
(16)

Thus, combining (15) and (16) leads to (7).

1.2 Proof of Theorem 1

For \(i=1,2\), the \(P_c \times N_t\) matrix \({\mathbf {W}}_{i}\) (\(n_{i}\,\triangleq\,{\text {rank}}({\mathbf {W}}_{i})\)) can be always factorized as (10) where \({\varvec{\Psi }}_{i}\) and \({\mathbf {B}}_{i}\) are respectively \(P_c \times n_{i}\), \(n_{i}\times N_t\) full rank matrices.

Given the factorization of (10), we can prove that

$$\begin{aligned} {\mathbf {W}}^H_{1}{\mathbf {W}}_{2}={\mathbf {0}}_{N_t\times N_t}\Leftrightarrow {\varvec{\Psi }}^H_{1}{\varvec{\Psi }}_{2}={\mathbf {0}}_{n_{1}\times n_{2}}. \end{aligned}$$

Since we have \({\text {rank}}({\varvec{\Psi }}_{i})={\text {rank}}({\mathbf {B}}_{i})={\text {rank}}({\mathbf {W}}_{i})=n_{i}\), \(P_c\ge n_{1}+n_{2}\) is derived. To lower the implementation complexity, the optimal \(P_c\) should be \(n_{1}+n_{2}\).

Next, if we further restrict \({\varvec{\Psi }}_{i}\)s satisfying \({\varvec{\Psi }}^H_{i}{\varvec{\Psi }}_{i}={\mathbf {I}}_{n_{i}}\), then \({\mathbf {W}}^H_{i}{\mathbf {W}}_{i}={\mathbf {B}}^H_{i}{\mathbf {B}}_{i}\). Thus, \({\text {tr}}({\mathbf {W}}^H_{i}{\mathbf {W}}_{i})={\text {tr}}({\mathbf {B}}^H_{i}{\mathbf {B}}_{i})=1\). Although \({\varvec{\Psi }}^H_{i}{\varvec{\Psi }}_{i}={\mathbf {I}}_{n_{i}}\) imposes another constraint on \({\varvec{\Psi }}_{i}\), the generality does not lose since this kind of factorization always exists. In this way, (8) is finally cast into (9). The proof of Theorem 1 is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Ren, P. Channel Correlation Based Zero-Forcing Beamforming in Two-User MISO Broadcast Channel. Wireless Pers Commun 97, 5841–5851 (2017). https://doi.org/10.1007/s11277-017-4813-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4813-z

Keywords

Navigation