Skip to main content
Log in

Design of Rate-Compatible QC-IRA-d Codes Based on Gaussian Approximation Analysis and Graph Extension

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel extending algorithm to design rate compatible (RC) QC-IRA-d codes through Tanner Graph extension. The structure of QC-IRA-d codes provides high efficiency and low complexity for graph extension. Thus, in the proposed method, there are three features: (1) close relation between the extended parts and original parity check matrix; (2) larger length of introduced cycles; (3) balanced check node degree. All of them guarantee good performance of the designed RC family codes. Simulation results show that the graph extension method outperforms existed algorithms from 0.05 to 0.47 dB for different rate codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hagenauer, J. (1988). Rate-compatible punctured convolutional codes (RCPCcodes) and their applications. IEEE Transactions on Communications, 36(4), 389–400.

    Article  Google Scholar 

  2. Ha, J., Kim, J., Klinc, D., & McLaughlin, S. W. (2006). Rate-compatible punctured low-density parity-check codes with short block lengths. IEEE Transactions on Information Theory, 52(2), 728–738.

    Article  MathSciNet  MATH  Google Scholar 

  3. Asvadi, R., & Banihashemi, A. H. (2013). A rate-compatible puncturing scheme for finite-length LDPC codes. IEEE Communications Letters, 17(1), 147–150.

    Article  Google Scholar 

  4. Li, J., & Narayanan, K. (2002). Rate-compatible low density parity check codes for capacity-approaching ARQ scheme in packet data communications. In International conference on communications, internet, and information technology (CIIT).

  5. Yazdani, M. R., & Banihashemi, A. H. (2004). On construction of rate-compatible low-density parity-check codes. IEEE Communications Letters, 8(3), 159–161.

    Article  Google Scholar 

  6. Hu, X. Y., Eleftheriou, E., & Arnold, D. M. (2005). Regular and irregular progressive edge-growth tanner graphs. IEEE Transactions on Information Theory, 51(1), 386–398.

    Article  MathSciNet  MATH  Google Scholar 

  7. Yue, G., Wang, X., & Madihian, M. (2007). Design of rate-compatible irregular repeat accumulate codes. IEEE Transactions on Communications, 55(6), 1153–1163.

    Article  Google Scholar 

  8. Benmayor, D., Mathiopoulos, P. T., & Constantinou, P. (2010). Rate-compatible IRA codes using quadratic congruential extension sequences and puncturing. IEEE Communications Letters, 14(5), P12–15.

    Article  Google Scholar 

  9. Nguyen, T. V., Nosratinia, A., & Divsalar, D. (2012). The design of rate-compatible protograph LDPC codes. IEEE Transactions on Communications, 60(10), 2841–2850.

    Article  Google Scholar 

  10. Nguyen, T. V., & Nosratinia, A. (2013). Rate-compatible short-length protograph LDPC codes. IEEE Communications Letters, 17(5), 948–951.

    Article  Google Scholar 

  11. Joo, H. G., Hong, S. N., & Shin, D. J. (2009). Design of rate-compatible RA-type low-density parity-check codes using splitting. IEEE Transactions on Communications, 57(12), 3624–3628.

    Article  Google Scholar 

  12. Beermann, M., & Vary, P. (2013). Breaking cycles with dummy bits: Improved rate-compatible LDPC codes with short block length. In Proceedings of 9th international ITG conference on SCC, pp. 1–6.

  13. Yue, G., Lu, B., & Wang, X. (2007). Analysis and design of finite-length LDPC codes. IEEE Transactions on Vehicular Technology, 56(3), 1321–1332.

    Article  Google Scholar 

  14. Huang, C. M., Huang, J. F., & Yang, C. C. (2008). Construction of quasi-cyclic LDPC codes from quadratic congruences. IEEE Communication Letters, 12(4), 313–315.

    Article  Google Scholar 

  15. Wang, J., Lei, J., Ni, S., Tang, X., & Ou, G. (2011). QC-IRA-d codes based on circulant permutation matrices. IEEE Communications Letters, 15(11), 1224–1227.

    Article  Google Scholar 

  16. Lei, J., Wang, J., & Tang, C. (2008). Quasi-cyclic extension based on PEG algorithm for construction of LDPC codes. Journal of Communication, 29(9), 103–110.

    Google Scholar 

  17. Richardson, T., & Urbanke, R. Multi-edge type LDPC codes, preprint [Online]. Available http//www.ithcwww.epfl.ch/papers/multiedge.ps.

  18. Hu, C., Wu, Z., Li, Z., & Wang, W. (2012). Construction of rate-compatible quasi-cyclic LDPC codes. Journal of Nanjing University of Aeronautics and Astronautics, 44(1), 93–99.

    Google Scholar 

Download references

Acknowledgements

This research was supported by research grant from NSFC, the National Natural Science Foundation of China (Nos. 61501479 and 61372098)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erbao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Li, E. & Li, W. Design of Rate-Compatible QC-IRA-d Codes Based on Gaussian Approximation Analysis and Graph Extension. Wireless Pers Commun 97, 2269–2282 (2017). https://doi.org/10.1007/s11277-017-4607-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4607-3

Keywords

Navigation