Skip to main content
Log in

Strongly Connected Ramanujan Graphs for Highly Symmetric LDPC Codes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A number of studies focus on Low-Density Parity-Check (LDPC) codes to ensure reliable data communications. This study proposes an algebraic algorithm to generate strongly connected Ramanujan graphs able to provide highly symmetric LDPC codes with minimized error floor. Several Ramanujan graphs are created using GAP system software to generate a rank-efficient parity-check matrix with fixed-rate LDPC codes. We find that Ramanujan LDPC codes achieve frame error rate and bit error rate on the order of \({10}^{-5}\) and \({10}^{-6}\), respectively. Furthermore, the codes outperform QC LDPC codes and those Ramanujan LDPC codes in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study, including the results and conclusions, are included in this article.

Code Availability

The author used MATLAB based on the algorithm described in detail in the manuscript.

References

  1. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory, hoboken. Wiley.

    MATH  Google Scholar 

  2. Lubotzky, A., Phillips, R., & Sarnak, P. (1988). Ramanujan graphs. Combinatorica, 8(3), 261–277.

    Article  MathSciNet  Google Scholar 

  3. Margulis, G. A. (1982). Explicit constructions of graphs without short cycles and low density codes. Combinatorica, 2(1), 71–78.

    Article  MathSciNet  Google Scholar 

  4. Gallager, R. (1962). Low-density parity-check codes. IEEE Transactions on Information Theory, 8(1), 21–28.

    Article  MathSciNet  Google Scholar 

  5. Rosenthal, J., & Vontobel, P. O. (2000). Constructions of ldpc codes using ramanujan graphs and ideas from Margulis. In Allerton conference on communication, control and computing, Allerton.

  6. MacKay, D. J., & Postol, M. S. (2003). Weaknesses of margulis and ramanujan-margulis low-density parity-check codes. Electronic Notes in Theoretical Computer Science, 74, 97–104.

    Article  Google Scholar 

  7. Jo, H., & Yamasaki, Y. (2018). LPS-type Ramanujan graphs. In 2018 international symposium on information theory and its applications (ISITA).

  8. Chiu, P. (1992). Cubic Ramanujan graphs. Combinatorica, 12(3), 275–285.

    Article  MathSciNet  Google Scholar 

  9. Liao, E., Yeo, E., & Nikolic, B. (2004). Low-density parity-check code constructions for hardware implementation. In 2004 IEEE international conference on communications (IEEE Cat. No.04CH37577), Paris.

  10. Asvadi, R., Banihashemi, A. H., & Ahmadian-Attari, M. (2011). Lowering the error floor of LDPC codes using cyclic liftings. IEEE Transactions on Information Theory, 57(4), 2213–2224.

    Article  MathSciNet  Google Scholar 

  11. Kim, S.-R., & Shin, D.-J. (2013). Lowering error floors of systematic LDPC codes using data shortening. IEEE Communications Letters, 17(12), 2348–2351.

    Article  Google Scholar 

  12. Tolouei, S., & Banihashemi, A. H. (2014). Lowering the error floor of LDPC codes using multi-step quantization. IEEE Communications Letters, 18(1), 86–89.

    Article  Google Scholar 

  13. Lee, H.-C., Chou, P.-C., & Ueng, Y.-L. (2018). An effective low-complexity error-floor lowering technique for high-rate QC-LDPC codes. IEEE Communications Letters, 22(10), 1988–1991.

    Article  Google Scholar 

  14. Soltanpur, C., Ghamari, M., Heravi, B. M., & Zare, F. (2017). Lowering error floors by concatenation of low-density parity-check and array code. International Journal of Mathematical and Computational Sciences, 11(4), 154–158.

    Google Scholar 

  15. Karimi, B., & Banihashemi, A. H. (2021). Construction of irregular protograph-based QC-LDPC codes with low error floor. IEEE Transactions on Communications, 69(1), 1.

    Article  Google Scholar 

  16. Zhang, G., Hu, Y., Fang, Y., & Wang, J. (2019). Constructions of type-II QC-LDPC codes with girth eight from sidon sequence. IEEE Transactions on Communications, 67(6), 3865–3878.

    Article  Google Scholar 

  17. Zhang, G., Hu, Y., Ren, D., Liu, Y., & Yang, Y. (2020). Type-II QC-LDPC codes from multiplicative subgroup of prime field. IEEE Access, 8, 142459–142467.

    Article  Google Scholar 

  18. Kaufman, T., & Lubotzky, A. (2012). Edge transitive Ramanujan graphs and symmetric LDPC good codes. In R. Ann (Ed.), STOC ’12: Proceedings of the forty-fourth annual ACM symposium on theory of computing. New York: Springer.

    Google Scholar 

  19. GAP- Groups, Algorithms, Programming—a system for computational discrete algebra (2020). Retrived 2020, from https://www.gap-system.org/index.html.

  20. Kaufman, T., & Lubotzky, A.. (2011). Edge transitive ramanujan graphs and highly symmetric LDPC good codes. Retrieved from https://arxiv.org/abs/1108.2960.

  21. Koetz, M. T. (2005). Algebraic constructions of low-density parity check codes. The University of Nebraska.

    Google Scholar 

  22. Lubotzky, A. (2012). Expander graphs in pure and applied mathematics. Bulletin of the American Mathematical Society, 49(1), 113–162.

    Article  MathSciNet  Google Scholar 

  23. Mohar, B. (1989). Isoperimetric numbers of graphs. Journal of Combinatorial Theory, Series B, 47(3), 274–291.

    Article  MathSciNet  Google Scholar 

  24. Kaufman, T., & Wigderson, A. (2016). Symmetric LDPC codes and local testing. Combinatorica, 36, 91–120.

    Article  MathSciNet  Google Scholar 

  25. Davidoff, G., Sarnak, P., & Valette, A. (2003). Elementary number theory, group theory, and ramanujan graphs. Cambridge University Press.

    MATH  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Al-Hamdani.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hamdani, H., Almamori, A. & Mohan, S. Strongly Connected Ramanujan Graphs for Highly Symmetric LDPC Codes. Wireless Pers Commun 125, 2463–2475 (2022). https://doi.org/10.1007/s11277-022-09668-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09668-0

Keywords

Navigation