Skip to main content
Log in

Mathematical Modeling of n-Sided Polygon Metamaterial Split Ring Resonators for 5.8 GHz ISM Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Metamaterials have become an interesting area of research in electromagnetism due to their unique characteristics which can radically change the world of wireless communication. Split ring resonator (SRR) is the most commonly used metamaterial structure which is used for preventing signal propagation at the desired frequency band due to its capability to exhibit negative permeability and stop band characteristics. This paper presents SRR designs for 5.8 GHz industrial, scientific and medical band applications. Rings of the designed SRRs are n-sided regular polygons. We have proposed a mathematical model for the SRR to estimate the shape of SRR for given values of coupling and bandwidth at 5.8 GHz. Subsequently, mathematical equations are proposed for the estimation of coupling and bandwidth from given shape of SRR for 5.8 GHz band. Proposed SRR designs and their mathematical models find applications in the areas such as reduction of mutual coupling in antenna arrays and design of microwave band stop filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pendry, J., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.

    Article  Google Scholar 

  2. Pendry, J. B., Holden, A. J., Robbins, D., & Stewart, W. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.

    Article  Google Scholar 

  3. Choi, J., & Seo, C. (2008). Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO. IEEE Transactions on Microwave Theory and Techniques, 56(12), 3245–3252.

    Article  Google Scholar 

  4. Aoki, Y., Uno, T., & Arima, T. (2013). Frequency band widening of negative permeability using split ring resonators. In Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS) (pp. 712–715). IEEE.

  5. Dai, Y., Liu, S.-B., Kong, X.-K., Zhang, H.-F., & Chen, C. (2014). Nonlinear phenomena of left-handed nonlinear split-ring resonators. Optik-International Journal for Light and Electron Optics, 125(16), 4484–4487.

    Article  Google Scholar 

  6. Liu, H., Fan, Y., Zhang, Z., Zhao, Y., Xu, W., Guan, X., et al. (2013). Dual-band superconducting bandpass filter using embedded split ring resonator. IEEE Transactions on Applied Superconductivity, 23(3), 1300304.

    Article  Google Scholar 

  7. Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S. F., & Abbott, D. (2014). Compact dual-mode wideband filter based on complementary split-ring resonator. IEEE Microwave and Wireless Components Letters, 24(3), 152–154.

    Article  Google Scholar 

  8. Horestani, A. K., Duran-Sindreu, M., Naqui, J., Fumeaux, C., & Martin, F. (2014). S-shaped complementary split ring resonators and their application to compact differential bandpass filters with common-mode suppression. IEEE Microwave and Wireless Components Letters, 24(3), 149–151.

    Article  Google Scholar 

  9. Dong, Y., & Itoh, T. (2011). Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design. IEEE Microwave and Wireless Components Letters, 21(1), 10–12.

    Article  Google Scholar 

  10. Li, J., Huang, Y., Wen, G., Xue, X., & Song, J. (2015). Compact and high-selectivity microstrip bandpass filter using two-stage twist-modified asymmetric split-ring resonators. Electronics Letters, 51(8), 635–637.

    Article  Google Scholar 

  11. Huang, Y., Wen, G., & Li, J. (2015). Compact and highly-selective microstrip bandpass filter and diplexer using two-stage twist modified split-ring resonators. In Proceedings of 2015 IEEE International Microwave Symposium on MTT-S (pp. 1–4). IEEE.

  12. Bage, A., & Das, S. (2013). Studies of some non conventional split ring and complementary split ring resonators for waveguide band stop & band pass filter application. In International Conference on Microwave and Photonics (ICMAP) (pp. 1–5). IEEE.

  13. Bose, S., Ramaraj, M., Raghavan, S., & Kumar, S. (2012). Mathematical modeling, equivalent circuit analysis and genetic algorithm optimization of an N-sided regular polygon split ring resonator (NRPSRR). Procedia Technology, 6, 763–770.

    Article  Google Scholar 

  14. Bait-Suwailam, M. M., Siddiqui, O. F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 9, 876–878.

    Article  Google Scholar 

  15. Habashi, A., Nourinia, J., & Ghobadi, C. (2011). Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs). IEEE Antennas and Wireless Propagation Letters, 10, 862–865.

    Article  Google Scholar 

  16. Chandu, D., Karthikeyan, S., & Phani Kumar, K. (2015). Reduction of mutual coupling in a two element patch antenna array using sub-wavelength resonators. In Twenty First National Conference on Communications (NCC) (pp. 1–5). IEEE.

  17. Gheethan, A., & Mumcu, G. (2011). Coupling reduction of coupled double loop GPS antennas using split ring resonators. In IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 2613–2616). IEEE.

  18. Liu, Z. (2013) Suppression of the mutual coupling between microstrip antenna arrays using negative permeability metamaterial on LTCC substrate. In Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE (pp. 1258–1259). IEEE.

  19. HafeziFard, R., Naser-Moghadasi, M., Rashed-Mohassel, J., & Sadeghzadeh Sheikhan, R.-A. (2015). Mutual coupling reduction for two closely-space meander line antennas using metamaterial substrate. IEEE Antennas and Wireless Propagation Letters, 15, 40–43.

    Google Scholar 

  20. Deepak, U., Roshna, T., Nijas, C., Vasudevan, K., & Mohanan, P. (2015). A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications. IEEE Transactions on Antennas and Propagation, 63(4), 1514–1520.

    Article  MathSciNet  Google Scholar 

  21. King, C. (2014). Fundamentals of wireless communications. In Cement Industry Technical Conference (CIC), 2014 IEEE-IAS/PCA (pp. 1–7). IEEE.

  22. Smith, D., Vier, D., Koschny, T., & Soukoulis, C. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3), 036617.

    Article  Google Scholar 

  23. Lancaster, P., & Salkauskas, K. (1986). Curve and surface fitting. New York: Academic press.

    MATH  Google Scholar 

  24. Cadwell, J., & Williams, D. (1961). Some orthogonal methods of curve and surface fitting. The Computer Journal, 4(3), 260–264.

    Article  MathSciNet  MATH  Google Scholar 

  25. Clenshaw, C., & Hayes, J. G. (1965). Curve and surface fitting. IMA Journal of Applied Mathematics, 1(2), 164–183.

    Article  MathSciNet  MATH  Google Scholar 

  26. Draper, N. R., Smith, H., & Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: Wiley.

    Google Scholar 

  27. Gujarati, D. N. (2012). Basic econometrics. New Delhi: Tata McGraw-Hill Education.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerna Saxena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Kothari, A. Mathematical Modeling of n-Sided Polygon Metamaterial Split Ring Resonators for 5.8 GHz ISM Band Applications. Wireless Pers Commun 96, 5959–5971 (2017). https://doi.org/10.1007/s11277-017-4457-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4457-z

Keywords

Navigation