Skip to main content
Log in

Exact Outage Probability Analysis of a Dual-Hop Cognitive Relaying Network Under the Overhearing of an Active Eavesdropper

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study the secure communication of dual-hop cognitive relaying networks. An eavesdropper can combine two received signals from two hops by using the maximum ratio combining technique. The data transmission from the secondary source to the secondary destination is assisted by the best decode-and-forward relay, which is selected from four relay selection schemes. The first scheme, MaSR, is based on the maximum channel gain from the source to the relays. In the second scheme, MaRD, the best relay is selected on the basis of the maximum channel gain from the relays to the destination. In the third scheme, MiRE, the gain to the eavesdroppers is instead minimized. Finally, optimal relay selection is considered as the fourth scheme. For these four schemes, we study the system security performance by deriving the exact analytical secrecy outage probability. These analytical expressions are then verified by comparing them with the results of Monte Carlo simulations. Herein, we evaluate and discuss the outage performance of the schemes while varying important system parameters: the number and locations of the relay nodes, primary user node, and eavesdropper; the transmit power threshold; and the target secure rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell System Technical Journal, 28(4), 646–715.

    Article  MathSciNet  MATH  Google Scholar 

  2. Silva, E. D., Santos, A. L. D., Albini, L. C. P., & Lima, M. N. (2008). Identity-based key management in mobile ad hoc networks: Schemes and applications. IEEE Wireless Communications, 15(5), 46–52.

    Article  Google Scholar 

  3. Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  4. Leung-Yan-Cheong, S., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transaction on Information Theory, 24(4), 451–456.

    Article  MathSciNet  MATH  Google Scholar 

  5. Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liang, Y., Poor, H. V., & Shamai, S. (2008). Secure Communication Over Fading Channels. IEEE Transactions on Information Theory, 54(6), 2470–2492.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barros, J., & Rodrigues, M. (2006). Secrecy capacity of wireless channels. In Proceedings of IEEE ISIT (pp. 356–360).

  8. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  10. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transaction on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  Google Scholar 

  12. Wang, L., Kim, K. J., Duong, T. Q., Elkashlan, M., & Poor, H. V. (2014). On the security of cooperative single carrier systems. In Proceedings of IEEE GLOBECOM (pp. 1956–1601).

  13. Fan, L., Lei, X., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2014). Secure multiuser communications in multiple amplify-and-forward relay networks. IEEE Transactions on Communications, 62(9), 3299–3310.

    Article  Google Scholar 

  14. Lee, J.-H. (2015). Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wireless Personal Communications, 83(4), 3033–3044.

    Article  Google Scholar 

  15. Fan, L., Yang, N., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2016). Exploiting direct links for physical layer security in multi-user multi-relay networks. IEEE Transactions on Wireless Communications, 15(6), 3856–3867.

    Article  Google Scholar 

  16. Akyildiz, L. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  17. Duong, T. Q., Costa, D. B., Tsiftsis, T. A., Zhong, C., & Nallanathan, A. (2012). Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Communications Letters, 16(12), 2075–2078.

    Article  Google Scholar 

  18. Najafi, M., Ardebilipour, M., Nasab, E. S., & Vahidian, S. (2015). Multi-hop cooperative communication technique for cognitive DF and AF relay networks. Wireless Personal Communications, 83(4), 3209–3221.

    Article  Google Scholar 

  19. Zhang, Q., Feng, Z., Yang, T., & Li, W. (2015). Optimal power allocation and relay selection in multi-hop cognitive relay networks. Wireless Personal Communications, 86(3), 1673–1692.

    Article  Google Scholar 

  20. Duong, T. Q., Duy, T. T., Elkashlan, M., Tran, N. H., & Dobre, O. A. (2014). Secured cooperative cognitive radio networks with relay selection. In Proceedings of IEEE GLOBECOM (pp. 3074–3079).

  21. Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4(1), 46–49.

    Article  Google Scholar 

  22. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Waltham: Academic.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Quang Nguyen.

Appendix 1: Proof of Lemma 1

Appendix 1: Proof of Lemma 1

By setting \(u = {\lambda _2}\theta \frac{{{x_3}}}{{{x_5}}}\), the integral \({I_1}\) can be rewritten by:

$$\begin{aligned} {I_1} = \frac{{{x_5}}}{{{\lambda _2}\theta }}\int _0^\infty {{{\left( {{\lambda _6} + {\lambda _2}\frac{{\theta - 1}}{\gamma } + u} \right) }^{ - 1}}{e^{ - \left( {{\lambda _3} + {\lambda _1}\theta } \right) \frac{{{x_5}}}{{{\lambda _2}\theta }}u}}} du \end{aligned}$$
(36)

Using equation 3.382.4 in [22] (\(\int _0^\infty {{{\left( {x + \beta } \right) }^v}{e^{ - \mu x}}dx} = {\mu ^{ - v - 1}}{e^{\beta \mu }}\Gamma \left( {v + 1,\beta \mu } \right)\)), we obtain:

$$\begin{aligned} {I_1}= & {} \frac{{{x_5}}}{{{\lambda _2}\theta }}\int _0^\infty {{{\left( {{\lambda _6} + {\lambda _2}\frac{{\theta - 1}}{\gamma } + u} \right) }^{ - 1}}{e^{ - \left( {{\lambda _3} + {\lambda _1}\theta } \right) \frac{{{x_5}}}{{{\lambda _2}\theta }}u}}} du\nonumber \\= & {} \frac{{{x_5}}}{{{\lambda _2}\theta }}{e^{\left( {{\lambda _6} + {\lambda _2}\frac{{\theta - 1}}{\gamma }} \right) \left( {\frac{{{\lambda _3} + {\lambda _1}\theta }}{{{\lambda _2}\theta }}} \right) {x_5}}}\Gamma \left[ {0,\left( {{\lambda _6} + {\lambda _2}\frac{{\theta - 1}}{\gamma }} \right) \left( {\frac{{{\lambda _3} + {\lambda _1}\theta }}{{{\lambda _2}\theta }}} \right) {x_5}} \right] \end{aligned}$$
(37)

This finishes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.Q., Kong, H.Y. Exact Outage Probability Analysis of a Dual-Hop Cognitive Relaying Network Under the Overhearing of an Active Eavesdropper. Wireless Pers Commun 96, 2271–2288 (2017). https://doi.org/10.1007/s11277-017-4297-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4297-x

Keywords

Navigation