Skip to main content
Log in

Performance Analysis of Optimum Combining Technique in OFDM Based Full Duplex Multiantenna DF Relay Network with Narrowband Interference

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, optimum combining technique is applied to minimize the effect of Narrowband Interference (NBI) in Orthogonal Frequency Division Multiplexing based full duplex relay network. The NBI signal is assumed to be quasi-static over the duration of a transmitted signal. Multiple antennas are employed at Decode and Forward relay and destination nodes. The Probability Density Function of Signal to Interference Ratio at relay and destination nodes is derived using Hotelling’s T 2 distribution. Analytical expression for the end-to-end outage probability of the proposed network is derived using the hypergeometric functions. As the weight vector of the optimal combiner is determined using the statistics of the interference channels, the performance of the proposed network becomes better than the network with maximal ratio combining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bingham, J. A. C. (2008). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28(5), 5–14.

    Article  Google Scholar 

  2. Batra, A., & Zeidler, J. (2008). Narrowband interference mitigation in OFDM systems. In Proceedings on IEEE MILCOM (pp. 1–7). San Diego.

  3. Batra, A., & Zeidler, J. (2009). Narrowband interference mitigation in BICM OFDM systems. In Proceedings on IEEE ICASSP (pp. 2605–2608). Taipei.

  4. Nilsson, R., Sjoberg, F., & LeBlanc, J. (2003). A rank-reduced LMMSE canceller for narrowband interference suppression in OFDM-based systems. IEEE Transactions on Communications, 51(12), 2126–2140.

    Article  Google Scholar 

  5. Sanguinetti, L., Morelli, M., & Poor, H.V. (2010). Robust EM-based detection of BICM-OFDM transmissions in the presence of narrowband interference. In European Wireless conference (pp. 696–700). Lucca.

  6. Letaief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceeding of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  7. Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.

    Article  Google Scholar 

  8. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  9. Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Journal on Selected Areas in Communications, 2(4), 528–539.

    Article  Google Scholar 

  10. Shah, A., & Hoimovich, A. M. (1998). Performance analysis of optimum combining in wireless communications with rayleigh fading and cochannel interference. IEEE Transactions on Vehicular Technology, 46(4), 473–479.

    Article  Google Scholar 

  11. Shah, A., & Hoimovich, A. M. (2000). Performance analysis of maximal ratio combining and comparison with optimum combining for mobile radio communications with cochannel interference. IEEE Transactions on Vehicular Technology, 49(4), 1454–1463.

    Article  Google Scholar 

  12. Aalo, V. A., & Zhang, J. (2000). Performance of antenna array systems with optimum combining in a Rayleigh fading environment. IEEE Communications Letters, 4(4), 125–127.

    Article  Google Scholar 

  13. Yue, D., Wang, X., & Xu, F. (2006). Performance analysis for optimum combining of rayleigh fading signals with correlated Rayleigh interferers and noise. IEEE Communications Letters, 13(5), 269–272.

    Google Scholar 

  14. Suraweera, N., & Beaulieu, N. C. (2014). Optimum combining with joint relay and antenna selection for multiple-antenna relays in the presence of co-channel interference. IEEE Communications Letters, 18(8), 1459–1462.

    Article  Google Scholar 

  15. Liu, F., Zhao, H., & Tong, Y. (2014). An eigen domain interference rejection combining algorithm for narrowband interference suppression. IEEE Communications Letters, 18(5), 813–816.

    Article  Google Scholar 

  16. Yue, D. W., & Zhang, Q.T. (2006). Outage performance analysis of correlated mimo optimum combining systems with and without co-channel interference. In Proceedings on IEEE WTC (pp. 269–273). Chengdu.

  17. Suraweera, N., & Beaulieu, N. C. (2015). Optimum combining for cooperative relaying in a poisson field of interferers. IEEE Transactions on Communications, 63(9), 3132–3142.

    Article  Google Scholar 

  18. Suraweera, N., & Beaulieu, N. C. (2015). Optimum combining in dual-hop AF relaying for maximum spectral efficiency in the presence of co-channel interference. IEEE Transactions on Communications, 63(6), 2071–2080.

    Article  Google Scholar 

  19. Yuksel, M., & Erkip, E. (2007). Multi-antenna cooperative wireless systems: A diversity-multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3392.

    Article  MathSciNet  MATH  Google Scholar 

  20. Riihonen, T., Werner, S., & Wichman, R. (2011). Transmit power optimization for multiantenna decode-and-forward relays with loopback self-interference from full-duplex operation. In IEEE Proceeding of ASILOMAR (pp. 1408–1412). Pacific Grove, CA.

  21. Liu, G., Yu, F. R., Ji, H., et al. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 17(2), 500–525.

    Article  MathSciNet  Google Scholar 

  22. Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Breda: Now Publishers Inc.

    MATH  Google Scholar 

  23. Muirhead, R. J. (2005). Aspects of multivariate statistical theory. New York: Wiley.

    MATH  Google Scholar 

  24. James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. The Annals of Mathematical Statistics, 35, 475–501.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samikkannu Rajkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, S., Thiruvengadam, S.J. Performance Analysis of Optimum Combining Technique in OFDM Based Full Duplex Multiantenna DF Relay Network with Narrowband Interference. Wireless Pers Commun 92, 547–563 (2017). https://doi.org/10.1007/s11277-016-3556-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3556-6

Keywords

Navigation