Skip to main content

Advertisement

Log in

New look on relay selection strategies for full-duplex multiple-relay NOMA over Nakagami-m fading channels

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

By removing the orthogonal use of radio-resources, non-orthogonal multiple access (NOMA) has been introduced to improve the spectral efficiency of fifth generation (5G) and beyond networks. This paper studies the system performance in a dual-hop multi-relay NOMA using decode-and-forward (DF) scheme over Nakagami-m fading channels. A group of NOMA users is considered, i.e. the near and far users which are decided by how strong these related channels are. Specifically, we obtain a closed-form expression of the outage probability of the near/far NOMA users when the several relay selection schemes are adopted for selecting the best among M intermediate relays. As main finding, this paper introduces three strategies including two-stage relay selection, max-min and power allocation based relay selection schemes. As main benefit, the NOMA users are considered to employ selection combining technique in order to improve signal transmissions for an increased reliability in the context of massive connections in 5G wireless communications. By conducting numerical simulations, we evaluate the impact of the number of intermediate relays, the NOMA power allocation factor, and the Nakagami-m fading severity parameter on the outage performance of the NOMA users. Finally, the outage probability along with throughout in delay-limited transmission mode are provided via numerical results and the necessary comparisons are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Islam, S. M. R., et al. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  2. Ding, Z., et al. (2017). Application of NOMA in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  3. Ding, Z. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  4. Kim, J. B., et al. (2015). NOMA in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  5. Men, J., et al. (2017). Performance analysis of non-orthogonal multiple access for relaying networks over Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.

    Article  Google Scholar 

  6. Li, Y., et al. (2018). Performance analysis of cooperative NOMA with a shared AF relay. IET Communications, 12(19), 2438–2447.

    Article  Google Scholar 

  7. Janghel, K., et al. (2018). Performance of adaptive OMA/cooperative-NOMA scheme with user selection. IEEE Communications Letters, 22(10), 1.

    Article  Google Scholar 

  8. Do, D.-T., & Le, C.-B. (2018). Application of NOMA in wireless system with wireless power transfer scheme: Outage and ergodic capacity performance analysis. Sensors, 18(10), 3501.

    Article  Google Scholar 

  9. Nguyen, T.-L., & Do, D.-T. (2018). Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Communications and Mobile Computing, 2018, 12 p, Article ID 2525492.

  10. Do, D.-T., & Van Nguyen, M.-S. (2019). Device-to-device transmission modes in NOMA network with and without wireless power transfer. Computer Communications, 139, 67–77.

    Article  Google Scholar 

  11. Do, D.-T., Vaezi, M., & Nguyen, T.-L. (2018). Wireless powered cooperative relaying using NOMA with imperfect CSI. In Proc. of IEEE Globecom workshops (GC Wkshps) (pp. 1–6).

  12. Ding, Z., et al. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416–419.

    Article  Google Scholar 

  13. Yang, Z., et al. (2017). Novel RS strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology,66(11), 10 114-10 123.

  14. Xu, P., et al. (2018). Optimal relay selection schemes for cooperative NOMA. IEEE Transactions on Vehicular Technology, 67(8), 7851–7855.

    Article  Google Scholar 

  15. Van Dinh-Thuan Do, M.-S., Nguyen, T.-A., & Hoang, M. V. (2019). NOMA-assisted multiple access scheme for IoT deployment: Relay selection model and secrecy performance improvement. Sensors, 19(3), 736.

    Article  Google Scholar 

  16. Bletsas, A., Khisti, A., Reed, D., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24, 659–672.

    Article  Google Scholar 

  17. Michalopoulos, D. S., & Karagiannidis, G. K. (2008). Performance analysis of single relay selection in Rayleigh fading. IEEE Transactions on Wireless Communications, 7, 3718–3724.

    Article  Google Scholar 

  18. Nomikos, N., Charalambous, T., Krikidis, I., Skoutas, D. N., Vouyioukas, D., Johansson, M., & Skianis, C. (2016). A survey on buffer-aided relay selection. IEEE Communications Surveys and Tutorials,18(2), 1073–1097 (secondquater).

  19. Zlatanov, N., Ikhlef, A., Islam, T., & Schober, R. (2014). Buffer-aided cooperative communications: Opportunities and challenges. IEEE Communications Magazine, 52(4), 146–153.

    Article  Google Scholar 

  20. Ikhlef, A., Michalopoulos, D. S., & Schober, R. (2012). Max-max relay selection for relays with buffers. IEEE Transactions on Wireless Communications, 11, 1124–1135.

    Article  Google Scholar 

  21. Krikidis, I., Charalambous, T., & Thompson, J. S. (2012). Buffer-aided relay selection for cooperative diversity systems without delay constraints. IEEE Transactions on Wireless Communications, 11, 1957–1967.

    Article  Google Scholar 

  22. Oiwa, M., Tosa, C., & Sugiura, S. (2016). Theoretical analysis of hybrid buffer-aided cooperative protocol based on max?max and max?link relay selections. IEEE Transactions on Vehicular Technology, 65(11), 9236–9246.

    Article  Google Scholar 

  23. Poulimeneas, D., Charalambous, T., Nomikos, N., Krikidis, I., Vouyioukas, D., & Johansson, M. (2016). A delay-aware hybrid relay selection policy. In IEEE int. conf. on telecomm., (ICT).

  24. Tian, Z., Gong, Y., Chen, G., & Chambers, J. (2017). Buffer-aided relay selection with reduced packet delay in cooperative networks. IEEE Transactions on Vehicular Technology, 66(3), 2567–2575.

    Article  Google Scholar 

  25. Luo, S., & Teh, K. C. (2015). Buffer state based relay selection for buffer-aided cooperative relaying systems. IEEE Transactions on Wireless Communications, 14(10), 5430–5439.

    Article  Google Scholar 

  26. Nomikos, N., Poulimeneas, D., Charalambous, T., Krikidis, I., Vouyioukas, D., & Johansson, M. (2018). Delay- and diversity-aware buffer-aided relay selection policies in cooperative networks. IEEE Access.

  27. Lin, S. L., & Liu, K. H. (2016). Relay selection for cooperative relaying networks with small buffers. IEEE Transactions on Vehicular Technology, 65(8), 6562–6572.

    Article  Google Scholar 

  28. Wicke, W., Zlatanov, N., Jamali, V., & Schober, R. (2017). Buffer-aided relaying with discrete transmission rates for the two-hop half-duplex relay network. IEEE Transactions on Wireless Communications, 16(2), 967–981.

    Article  Google Scholar 

  29. Zhou, B., Cui, Y., & Tao, M. (2015). Stochastic throughput optimization for two-hop systems with finite relay buffers. IEEE Transactions on Signal Processing, 63(20), 5546–5560.

    Article  MathSciNet  Google Scholar 

  30. Oiwa, M., Nakai, R., & Sugiura, S. (2017). Buffer-state-and-thresholding-based amplify-and-forward cooperative networks. IEEE Wireless Communications Letters, 6(5), 674–677.

    Article  Google Scholar 

  31. Kim, D., Lee, H., & Hong, D. (2015). A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers. IEEE Communications Surveys and Tutorials,17(4), 2017–2046 (Fourth Quarter).

  32. Jain, M., Choi, J. I., Kim, T., Bharadia, D., Seth, S., Srinivasan, K., et al. (2011). Practical, real-time, full duplex wireless. ACM MobiCom: In in Proc.

    Book  Google Scholar 

  33. Li, W., Lilleberg, J., & Rikkinen, K. (2014). On rate region analysis of half-and full-duplex OFDM communication links. IEEE Journal on Selected Areas in Communications, 32(9), 1688–1698.

    Article  Google Scholar 

  34. Tregancini, A., Olivo, E. E. B., Osorio, D. P. M., de Lima, C. H. M., & Alves, H. (2020). Performance analysis of full-duplex relay-aided NOMA systems using partial relay selection. IEEE Transactions on Vehicular Technology, 69(1), 622–635.

    Article  Google Scholar 

  35. Dang, H., Van Nguyen, M., Do, D., Pham, H., Selim, B., & Kaddoum, G. (2020). Joint relay selection, full-duplex and device-to-device transmission in wireless powered NOMA networks. IEEE Access, 8, 82442–82460.

    Article  Google Scholar 

  36. Nomikos, N., Charalambous, T., Vouyioukas, D., Wichman, R., & Karagiannidis, G. K. (2020). Integrating broadcasting and NOMA in full-duplex buffer-aided opportunistic relay networks. IEEE Transactions on Vehicular Technology, 69(8), 9157–9162.

    Article  Google Scholar 

  37. Xiang, Z., Yang, W., Cai, Y., Xiong, J., Ding, Z., & Song, Y. (2020). Secure transmission in a NOMA-assisted IoT network with diversified communication requirements. IEEE Internet of Things Journal, 7(11), 11157–11169. https://doi.org/10.1109/JIOT.2020.2995609.

    Article  Google Scholar 

  38. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416–419.

    Article  Google Scholar 

  39. Seventh Edition, Table of Integrals, Series, and Products, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 1

It is straight forward to obtain Lemma 1 as below

$$\begin{aligned} \begin{aligned} \varPhi \left( {a,b,k} \right) =&\Pr \left( {a{{\left| {{h_k}} \right| }^2} \ge b{{\left| {{f_k}} \right| }^2} + 1} \right) \\ =&\int \limits _0^\infty {\left( {1 - {F_{{{\left| {{h_k}} \right| }^2}}}\left( {\frac{{bx + 1}}{a}} \right) } \right) {f_{{{\left| {{f_k}} \right| }^2}}}\left( x \right) dx} \\ =&\frac{{\exp \left( {-1} \big / {\left( {a{\beta _h}} \right) } \right) }}{{\varGamma \left( {{m_f}} \right) \beta _f^{{m_f}}}}\sum \limits _{n = 0}^{{m_h} - 1} {\frac{1}{{\beta _h^n{a^n}}}} \int \limits _0^\infty {\frac{{{{\left( {bx + 1} \right) }^n}{x^{{m_f} - 1}}}}{{n!}}{{\mathrm{e}} ^{ - x\left( {\frac{1}{{{\beta _f}}} + \frac{b}{{a{\beta _h}}}} \right) }}dx}. \end{aligned} \end{aligned}$$
(47)

It can be simplified \( \varPhi \left( {a,b,k} \right) \) as below

$$\begin{aligned} \begin{aligned} \varPhi \left( {a,b,k} \right) =&\frac{\exp \left( { - 1} \big / {\left( {a{\beta _h}} \right) } \right) }{\varGamma \left( {{m_f}} \right) \beta _f^{{m_f}}}\sum \limits _{n = 0}^{{m_h} - 1} {\sum \limits _{k = 0}^n {\left( \begin{array}{c} n\\ k \end{array} \right) } \frac{1}{{\beta _h^n{a^n}}}\frac{{{b^k}}}{{n!}}} \int \limits _0^\infty {{x^{k + {m_f} - 1}}{{\mathrm{e}} ^{ - x\left( {\frac{1}{{{\beta _f}}} + \frac{b}{{a{\beta _h}}}} \right) }}dx}\\ =&\frac{\exp \left( - 1 \big / \left( {a{\beta _h}} \right) \right) }{\varGamma \left( {{m_f}} \right) \beta _f^{{m_f}}}\sum \limits _{n = 0}^{{m_h} - 1} {\sum \limits _{k = 0}^n {\left( \begin{array}{c} n\\ k \end{array} \right) } \frac{1}{{\beta _h^n{a^n}}}} \frac{{{b^k}}}{{n!}}{\left( {\frac{1}{{{\beta _f}}} + \frac{b}{{a{\beta _h}}}} \right) ^{ - k - {m_f}}}\varGamma \left( {k + {m_f}} \right) . \end{aligned} \end{aligned}$$
(48)

The last step can be obtained by applying (Eq. 1.111) in [39], and the integration is derived thank to (Eq. 3.381.4) in [39]. Thus, the lemma is proved.

Appendix B: Proof of Proposition 1

Based on the definition of MM mode using (18), the system outage is given by (49), shown in the top of the next page.

$$\begin{aligned} \begin{aligned} O{P_{MM}} =&\Pr \left( {\min \left( {\frac{{{\gamma _{{r_{{b_{MM}}}} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_{{b_{MM}}}},{d_1}}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_{{b_{MM}}}},{d_2} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_{{b_{MM}}}} \leftarrow 2}}}}{{\delta _2^{\mathrm{th}}}},\frac{{{\gamma _{{r_{{b_{MM}}}},{d_2}}}}}{{\delta _2^{\mathrm{th}}}}} \right)< 1} \right) \\ =&\Pr \left( {{\max }_{k \in {{\mathcal S}_{\mathcal R}}} \left( {\min \left( {\frac{{{\gamma _{{r_k} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_1}}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k} \leftarrow 2}}}}{{\delta _2^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2}}}}}{{\delta _2^{\mathrm{th}}}}} \right) } \right) < 1} \right) . \end{aligned} \end{aligned}$$
(49)

Additionally, due to the independence of channels, (49) can be simplified as

$$\begin{aligned} \begin{aligned} O{P_{MM}} =&\prod \limits _{k = 1}^M {\Pr \left( {\min \left( {\frac{{{\gamma _{{r_k} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_1}}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k} \leftarrow 2}}}}{{\delta _2^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2}}}}}{{\delta _2^{\mathrm{th}}}}} \right) < 1} \right) } \\ =&\prod \limits _{k = 1}^M {1 - \Pr \left( {\min \left( {\frac{{{\gamma _{{r_k} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_1}}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k} \leftarrow 2}}}}{{\delta _2^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2}}}}}{{\delta _2^{\mathrm{th}}}}} \right) \ge 1} \right) } \\ =&\prod \limits _{k = 1}^M {1 - \Pr \left( {\frac{{{\gamma _{{r_k} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}} \ge 1,\frac{{{\gamma _{{r_k},{d_1}}}}}{{\delta _1^{\mathrm{th}}}} \ge 1,\frac{{{\gamma _{{r_k},{d_2} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}} \ge 1,\frac{{{\gamma _{{r_k} \leftarrow 2}}}}{{\delta _2^{\mathrm{th}}}} \ge 1,\frac{{{\gamma _{{r_k},{d_2}}}}}{{\delta _2^{\mathrm{th}}}} \ge 1} \right) }. \end{aligned} \end{aligned}$$
(50)

The expression in multiplication can be further expressed as (51).

$$\begin{aligned} \begin{aligned} \Pr \left( {\min \left( {\frac{{{\gamma _{{r_k} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k} \leftarrow 2}}}}{{\delta _2^{\mathrm{th}}}}} \right) \ge 1} \right) \Pr \left( {\frac{{{\gamma _{{r_k},{d_1}}}}}{{\delta _1^{\mathrm{th}}}} \ge 1} \right) \Pr \left( {\min \left( {\frac{{{\gamma _{{r_k},{d_2} \leftarrow 1}}}}{{\delta _1^{\mathrm{th}}}},\frac{{{\gamma _{{r_k},{d_2}}}}}{{\delta _2^{\mathrm{th}}}}} \right) \ge 1} \right) . \end{aligned} \end{aligned}$$
(51)

Finally, with the same step in (45), the Theorem 1 is derived.

This completes the proof.

Appendix C: Proof of Proposition 3

The above probability \({\eta _1}\) can be calculated as

$$\begin{aligned} \begin{aligned} {\eta _1} =&\Pr \left\{ {\min \left\{ {\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }},\max \left( {0,\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }}} \right) } \right\} \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}:{r_b} \in {{\mathcal B}_{\mathcal R}}} \right\} \\ =&\Pr \left\{ {{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}> \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}},\min \left\{ {\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }},\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }}} \right\} \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}:{r_b} \in {{\mathcal B}_{\mathcal R}}} \right\} \\&+ \underbrace{\Pr \left\{ {{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \le \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}},0 \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}:{r_b} \in {{\mathcal B}_{\mathcal R}}} \right\} }_{ = 0} \\ =&\Pr \left\{ {{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}},\underbrace{\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }} \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}}_{ \buildrel \varDelta \over = {\varpi _1}},\underbrace{\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }} \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}}_{ \buildrel \varDelta \over = {\varpi _2}}:{r_b} \in {{\mathcal B}_{\mathcal R}}} \right\} . \end{aligned} \end{aligned}$$
(52)

With the condition \({\rho _r}{\left| {{g_{{r_b},{d_2}}}} \right| ^2} - \delta _1^{\mathrm{th}} > 0\) \( \Leftrightarrow {\left| {{g_{{r_b},{d_2}}}} \right| ^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}\) \( \Rightarrow \max \left( {0,\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }}} \right) = \frac{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }}\).

We calculate \({\varpi _1}\)

$$\begin{aligned} \begin{aligned} {\varpi _1} =&\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }} \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\\ =&{\left| {{g_{{r_b},{d_1}}}} \right| ^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _2^{\mathrm{th}}\left( {1 + \delta _1^{\mathrm{th}}} \right) }}\\ =&{\left| {{g_{{r_b},{d_1}}}} \right| ^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}}, \end{aligned} \end{aligned}$$
(53)

where \({\rho _r}{\left| {{g_{{r_b},{d_1}}}} \right| ^2} - \delta _1^{\mathrm{th}} > 0\) \( \Leftrightarrow {\left| {{g_{{r_b},{d_1}}}} \right| ^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}\) and \({\varepsilon _1} = \delta _2^{\mathrm{th}}\left( {1 + \delta _1^{\mathrm{th}}} \right) \).

We calculate \({\varpi _2}\)

$$\begin{aligned} \begin{aligned} {\varpi _2} =&\frac{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - \delta _1^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}\left( {1 + \delta _1^{\mathrm{th}}} \right) }} \ge \frac{{\delta _2^{\mathrm{th}}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\\ =&{\left| {{g_{{r_b},{d_2}}}} \right| ^2} \ge \frac{{\delta _2^{\mathrm{th}}\left( {1 + \delta _1^{\mathrm{th}}} \right) + \delta _1^{\mathrm{th}}}}{{{\rho _r}}}\\ =&{\left| {{g_{{r_b},{d_2}}}} \right| ^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}, \end{aligned} \end{aligned}$$
(54)

where \(\left\{ {\begin{array}{*{20}{c}} {{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}> \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}}\\ {{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}} \end{array}} \right. \Leftrightarrow {\left| {{g_{{r_b},{d_2}}}} \right| ^2} > \max \left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}},\frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right) \) \( \Rightarrow {\left| {{g_{{r_b},{d_2}}}} \right| ^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}\) and \({\varepsilon _2} = {\varepsilon _1} + \delta _1^{\mathrm{th}}\).

From \({\varpi _1}\) and \({\varpi _2}\), we have new result as follow

$$\begin{aligned} \begin{aligned} {\eta _1} = \Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}:{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} . \end{aligned} \end{aligned}$$
(55)

We apply the Bayes theorem: \({\mathrm{P}}\left( {{\mathrm{A'}}\left| {\mathrm{C}} \right. } \right) {\mathrm{= }}\frac{{{\mathrm{P}}\left( {{\mathrm{A'}},{\mathrm{C}}} \right) }}{{{\mathrm{P}}\left( {\mathrm{C}} \right) }}\), where \( {\mathrm{P}}\left( {{\mathrm{A',C}}} \right) \) is computed as follow, while \({\mathrm{P}}\left( {\mathrm{C}} \right) = \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} \).

$$\begin{aligned} \begin{aligned} {\mathrm{P}}\left( {{\mathrm{A',C}}} \right) = \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}},{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} . \end{aligned} \end{aligned}$$
(56)

It is worth noting that \( {\left| {{g_{{r_b},{d_1}}}} \right| ^2} \ge {\mathrm{}}\frac{{\delta _1^{{\mathrm{th}}}}}{{{\rho _r} - \frac{{{\varepsilon _1}}}{{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}}} \) because \(\frac{{{\varepsilon _1}}}{{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}} \ge 0\).

$$\begin{aligned} \begin{aligned} \Rightarrow {\rho _r} - \frac{{{\varepsilon _1}}}{{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}} \le {\rho _r} \Leftrightarrow \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}\\ \Rightarrow \max \left( {\frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) = \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}}. \end{aligned} \end{aligned}$$
(57)

After the analysis, \({\eta _1}\) is calculated by

$$\begin{aligned} \begin{aligned} {\eta _1} =&\frac{{{\mathrm{P}}\left( {{\mathrm{A'}},{\mathrm{C}}} \right) }}{{{\mathrm{P}}\left( {\mathrm{C}} \right) }}\\ =&\frac{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}},{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}> \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} }}{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}> \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} }}\\ =&\frac{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} \ge \max \left\{ {\frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} ,{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right\} }}{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}> \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} }}\\ =&\frac{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right\} }}{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} }}. \end{aligned} \end{aligned}$$
(58)

We have

$$\begin{aligned} {\eta _1} =&\frac{{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} \ge \frac{{\delta _1^{\mathrm{th}}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}{{{\rho _r}{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} - {\varepsilon _1}}},{{\left| {{g_{{r_b},{d_2}}}} \right| }^2} \ge \frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right\} }}{{1 - {F_{{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) }}. \end{aligned}$$
(59)

Now, we have new variables as \(X = {\left| {{g_{{r_b},{d_1}}}} \right| ^2},Y = {\left| {{g_{{r_b},{d_2}}}} \right| ^2}\). Next, \({\eta _1}\) is calculated as follow

$$\begin{aligned} \begin{aligned} {\eta _1} =&\frac{{\int _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\left( {1 - {F_X}\left( {\frac{{\delta _1^{\mathrm{th}}Y}}{{{\rho _r}Y - {\varepsilon _1}}}} \right) } \right) {f_Y}\left( y \right) dy} }}{{1 - {F_{{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) }}\\ =&\frac{{{\varPhi _1}}}{{{\varPhi _2}}} \end{aligned} \end{aligned}$$
(60)

It is necessary to calculate \({\varPhi _1}\) and \({\varPhi _2}\) respectively as bellows. By using partial integration, we have

$$\begin{aligned} \begin{aligned} {\varPhi _1} =&\int _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\left( {1 - {F_X}\left( {\frac{{\delta _1^{\mathrm{th}}Y}}{{{\rho _r}Y - {\varepsilon _1}}}} \right) } \right) {f_Y}\left( y \right) dy} \\ =&\int _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\left( {1 - {F_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) } \right) {f_{{{\left| {{g_{{r_k},{d_2}}}} \right| }^2}}}\left( y \right) dy}. \end{aligned} \end{aligned}$$
(61)

Then, \( {\varPhi _1} \) is rewritten as

$$\begin{aligned} \begin{aligned} {\varPhi _1} =&\underbrace{\left( {1 - {F_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) } \right) {F_{{{\left| {{g_{{r_k},{d_2}}}} \right| }^2}}}\left( y \right) }_{ \buildrel \varDelta \over = {\varphi _1}}\\&- \underbrace{\int \limits _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\frac{{{\varepsilon _1}\delta _1^{\mathrm{th}}}}{{{{\left( {{\rho _r}y - {\varepsilon _1}} \right) }^2}}}{F_{{{\left| {{g_{{r_k},{d_2}}}} \right| }^2}}}\left( y \right) {f_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) dy} }_{ \buildrel \varDelta \over = {\varphi _2}}, \end{aligned} \end{aligned}$$
(62)

where \( {\varphi _1} \) and \({\varphi _2}\) are computed as follows

$$\begin{aligned}&\begin{aligned} {\varphi _1} =&\left( {1 - {F_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) } \right) {F_{{{\left| {{g_{{r_k},{d_2}}}} \right| }^2}}}\left( y \right) |\begin{array}{*{20}{c}} \infty \\ {\frac{{{\varepsilon _2}}}{{{\rho _r}}}} \end{array}\\ =&\left( {1 - {F_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) } \right) - \left( {1 - {F_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{{\varepsilon _2}\delta _1^{\mathrm{th}}}}{{{\rho _r}\left( {{\varepsilon _2} - {\varepsilon _1}} \right) }}} \right) } \right) \\&\times {\left( {1 - {{\mathrm{e}} ^{ - \frac{{{\varepsilon _2}}}{{{\beta _{{g_{{r_k},{d_2}}}}}{\rho _r}}}}}\sum \limits _{{n_1} = 0}^{{m_{{g_{{r_k},{d_2}}}}} - 1} {\frac{1}{{{n_1}!\beta _{{g_{{r_k},{d_2}}}}^{{n_1}}}}} {{\left( {\frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right) }^{{n_1}}}} \right) ^i}\\ =&{{\mathrm{e}} ^{ - \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_k},{d_1}}}}}}}}}{\sum \limits _{n = 0}^{{m_{{g_{{r_k},{d_1}}}}} - 1} {\frac{1}{{n!\beta _{{g_{{r_k},{d_1}}}}^n}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) } ^n}\\&- {{\mathrm{e}} ^{ - \frac{{{\varepsilon _2}\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_k},{d_1}}}}}\left( {{\varepsilon _2} - {\varepsilon _1}} \right) }}}}\sum \limits _{n = 0}^{{m_{{g_{{r_b},{d_1}}}}} - 1} {\frac{1}{{n!\beta _{{g_{{r_b},{d_1}}}}^n}}} {\left( {\frac{{{\varepsilon _2}\delta _1^{\mathrm{th}}}}{{{\rho _r}\left( {{\varepsilon _2} - {\varepsilon _1}} \right) }}} \right) ^n}\\&\times {\left( {1 - {{\mathrm{e}} ^{ - \frac{{{\varepsilon _2}}}{{{\beta _{{g_{{r_k},{d_2}}}}}{\rho _r}}}}}\sum \limits _{{n_1} = 0}^{{m_{{g_{{r_k},{d_2}}}}} - 1} {\frac{1}{{{n_1}!\beta _{{g_{{r_k},{d_2}}}}^{{n_1}}}}} {{\left( {\frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right) }^{{n_1}}}} \right) ^i}. \end{aligned} \end{aligned}$$
(63)
$$\begin{aligned}&\begin{aligned} {\varphi _2} =&\int \limits _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\frac{{{\varepsilon _1}\delta _1^{\mathrm{th}}}}{{{{\left( {{\rho _r}y - {\varepsilon _1}} \right) }^2}}}{F_{{{\left| {{g_{{r_k},{d_2}}}} \right| }^2}}}\left( y \right) {f_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) dy} \\ =&\frac{1}{{\varGamma \left( {{m_{{g_{{r_k},{d_1}}}}}} \right) \beta _{{g_{{r_k},{d_1}}}}^{{m_{{g_{{r_k},{d_1}}}}}}}}\int \limits _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\frac{{{\varepsilon _1}\delta _1^{\mathrm{th}}}}{{{{\left( {{\rho _r}y - {\varepsilon _1}} \right) }^2}}}{{\left( {1 - {{\mathrm{e}} ^{ - \frac{y}{{{\beta _{{g_{{r_k},{d_2}}}}}}}}}\sum \limits _{{n_2} = 0}^{{m_{{g_{{r_k},{d_2}}}}} - 1} {\frac{1}{{{n_2}!\beta _{{g_{{r_k},{d_2}}}}^{{n_2}}}}} {y^{{n_2}}}} \right) }^i}} \\&\times {\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) ^{{m_{{g_{{r_k},{d_1}}}}} - 1}}{{\mathrm{e}} ^{ - \frac{{\delta _1^{\mathrm{th}}y}}{{{\beta _{{g_{{r_k},{d_1}}}}}\left( {{\rho _r}y - {\varepsilon _1}} \right) }}}}dy. \end{aligned} \end{aligned}$$
(64)

Since the CDF of \({\left| {{g_{{r_b},{d_2}}}} \right| ^2}\), e.g. , \({F_Y}\left( y \right) = {\left( {{F_{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\left( y \right) } \right) ^i}\), then it can be achieved PDF as follow

$$\begin{aligned} \begin{aligned} {f_{{{\left| {{g_{{r_k},{d_2}}}} \right| }^2}}}\left( y \right) =&{\left( {{{\left( {{F_{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\left( y \right) } \right) }^i}} \right) ^\prime }\\ =&i \times {\left( {{F_{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\left( y \right) } \right) ^{i - 1}}{\left( {{F_{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\left( y \right) } \right) ^\prime }\\ =&i \times {\left( {{F_{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\left( y \right) } \right) ^{i - 1}}{f_{{{\left| {{g_{{r_b},{d_2}}}} \right| }^2}}}\left( y \right) \\ =&i {\left( {1 - {{\mathrm{e}} ^{ - \frac{y}{{{\beta _{{g_{{r_k},{d_2}}}}}}}}}\sum \limits _{n = 0}^{{m_{{g_{{r_k},{d_2}}}}} - 1} {\frac{1}{{n!\beta _{{g_{{r_k},{d_2}}}}^n}}} {y^n}} \right) ^{i - 1}}\frac{{{y^{{m_{{g_{{r_b},{d_2}}}}} - 1}}}}{{\varGamma \left( {{m_{{g_{{r_b},{d_2}}}}}} \right) \beta _{{g_{{r_b},{d_2}}}}^{{m_{{g_{{r_b},{d_2}}}}}}}}{{\mathrm{e}} ^{ - \frac{y}{{{\beta _{{g_{{r_b},{d_2}}}}}}}}}. \end{aligned} \end{aligned}$$
(65)

Finally, we have

$$\begin{aligned} \begin{aligned} {\varPhi _1} =&{\varphi _1} - {\varphi _2}\\ =&\exp \left( { - \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_k},{d_1}}}}}}}} \right) {\sum \limits _{n = 0}^{{m_{{g_{{r_k},{d_1}}}}} - 1} {\frac{1}{{n!\beta _{{g_{{r_k},{d_1}}}}^n}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) } ^n}\\&- \exp \left( { - \frac{{{\varepsilon _2}\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_k},{d_1}}}}}\left( {{\varepsilon _2} - {\varepsilon _1}} \right) }}} \right) \sum \limits _{n = 0}^{{m_{{g_{{r_b},{d_1}}}}} - 1} {\frac{1}{{n!\beta _{{g_{{r_b},{d_1}}}}^n}}} {\left( {\frac{{{\varepsilon _2}\delta _1^{\mathrm{th}}}}{{{\rho _r}\left( {{\varepsilon _2} - {\varepsilon _1}} \right) }}} \right) ^n}\\&\times {\left( {1 - \exp \left( { - \frac{1}{{{\beta _{{g_{{r_k},{d_2}}}}}}}\frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right) \sum \limits _{{n_1} = 0}^{{m_{{g_{{r_k},{d_2}}}}} - 1} {\frac{1}{{{n_1}!\beta _{{g_{{r_k},{d_2}}}}^{{n_1}}}}} {{\left( {\frac{{{\varepsilon _2}}}{{{\rho _r}}}} \right) }^{{n_1}}}} \right) ^i}\\&- \frac{1}{{\varGamma \left( {{m_{{g_{{r_k},{d_1}}}}}} \right) \beta _{{g_{{r_k},{d_1}}}}^{{m_{{g_{{r_k},{d_1}}}}}}}}\int \limits _{\frac{{{\varepsilon _2}}}{{{\rho _r}}}}^\infty {\frac{{{\varepsilon _1}\delta _1^{\mathrm{th}}}}{{{{\left( {{\rho _r}y - {\varepsilon _1}} \right) }^2}}}{{\left( {1 - {{\mathrm{e}} ^{ - \frac{y}{{{\beta _{{g_{{r_k},{d_2}}}}}}}}}\sum \limits _{{n_2} = 0}^{{m_{{g_{{r_k},{d_2}}}}} - 1} {\frac{1}{{{n_2}!\beta _{{g_{{r_k},{d_2}}}}^{{n_2}}}}} {y^{{n_2}}}} \right) }^i}} \\&\times {\left( {\frac{{\delta _1^{\mathrm{th}}y}}{{{\rho _r}y - {\varepsilon _1}}}} \right) ^{{m_{{g_{{r_k},{d_1}}}}} - 1}}\exp \left( { - \frac{{\delta _1^{\mathrm{th}}y}}{{{\beta _{{g_{{r_k},{d_1}}}}}\left( {{\rho _r}y - {\varepsilon _1}} \right) }}} \right) dy. \end{aligned} \end{aligned}$$
(66)

and

$$\begin{aligned} \begin{aligned} {\varPhi _2} =&1 - {F_{{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) \\ =&1 - 1 - \frac{1}{{\varGamma \left( {{m_{{g_{{r_b},{d_1}}}}}} \right) }}\varGamma \left( {{m_{{g_{{r_b},{d_1}}}}},\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_b},{d_1}}}}}}}} \right) \\ =&\frac{1}{{\varGamma \left( {{m_{{g_{{r_b},{d_1}}}}}} \right) }}\varGamma \left( {{m_{{g_{{r_b},{d_1}}}}},\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_b},{d_1}}}}}}}} \right) \\ =&{{\mathrm{e}} ^{ - \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_k},{d_1}}}}}}}}}\sum \limits _{{n_3} = 0}^{{m_{{g_{{r_k},{d_1}}}}} - 1} {\frac{{{{\left( {\delta _1^{\mathrm{th}}} \right) }^{{n_3}}}}}{{{n_3}!\rho _r^{{n_3}}\beta _{{g_{{r_k},{d_1}}}}^{{n_3}}}}}. \end{aligned} \end{aligned}$$
(67)

Substituting (66) and (67) into (60), \( \eta _1 \) can be computed.

Defining \({\varOmega _\theta }\) as the probability that the relay \({r_i}\) is in the active relay set \({{\mathcal B}_{\mathcal R}}\), the \({\varOmega _\theta }\) can be mathematically formulated as

$$\begin{aligned} \begin{aligned} {\varOmega _\theta } \buildrel \varDelta \over =&\Pr \left( {{r_i} \in {{\mathcal B}_{\mathcal R}}} \right) \\ =&\Pr \left\{ {{{\left| {{h_i}} \right| }^2} \ge \chi ,{{\left| {{g_{{r_b},{d_1}}}} \right| }^2}> \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} \\ =&\underbrace{\Pr \left\{ {{{\left| {{h_i}} \right| }^2} \ge \chi } \right\} }_{ \buildrel \varDelta \over = \varphi _1^*} \times \underbrace{\Pr \left\{ {{{\left| {{g_{{r_b},{d_1}}}} \right| }^2} > \frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right\} }_{ \buildrel \varDelta \over = \varphi _2^*}. \end{aligned} \end{aligned}$$
(68)

We have

$$\begin{aligned} \begin{aligned} \varphi _1^* =&\Pr \left\{ {{{\left| {{h_i}} \right| }^2} \ge \chi } \right\} \\ =&\Pr \left\{ {{{\left| {{h_i}} \right| }^2} \ge \frac{\mu }{{{\rho _s}}}\left( {{\rho _r}{{\left| {{f_k}} \right| }^2} + 1} \right) } \right\} \\ =&\int \limits _0^\infty {\left( {1 - {F_{{{\left| {{h_i}} \right| }^2}}}\left( {\frac{\mu }{{{\rho _s}}}\left( {{\rho _r}x + 1} \right) } \right) } \right) } {f_{{{\left| {{f_k}} \right| }^2}}}\left( x \right) dx\\ =&\int \limits _0^\infty {\left( {1 - \left( {1 - \exp \left( { - \frac{\mu }{{{\beta _h}{\rho _s}}}\left( {{\rho _r}x + 1} \right) } \right) \sum \limits _{n = 0}^{{m_h} - 1} {\frac{{{\mu ^n}{{\left( {{\rho _r}x + 1} \right) }^n}}}{{n!\rho _s^n\beta _h^n}}} } \right) } \right) } \frac{{{x^{{m_{{f_k}}} - 1}}}}{{\varGamma \left( {{m_{{f_k}}}} \right) \beta _{{f_k}}^{{m_{{f_k}}}}}}\exp \left( { - \frac{x}{{{\beta _{{f_k}}}}}} \right) dx\\ =&\exp \left( { - \frac{\mu }{{{\beta _h}{\rho _s}}}} \right) \int \limits _0^\infty {\sum \limits _{n = 0}^{{m_h} - 1} {\frac{{{\mu ^n}{{\left( {{\rho _r}x + 1} \right) }^n}}}{{n!\rho _s^n\beta _h^n}}} } \frac{{{x^{{m_{{f_k}}} - 1}}}}{{\varGamma \left( {{m_{{f_k}}}} \right) \beta _{{f_k}}^{{m_{{f_k}}}}}}\exp \left( { - \left( {\frac{1}{{{\beta _{{f_k}}}}} + \frac{{\mu {\rho _r}}}{{{\beta _h}{\rho _s}}}} \right) x} \right) dx\\ =&\frac{\exp \left( - \mu \big / \beta _h{\rho _s} \right) }{\varGamma \left( {{m_{{f_k}}}} \right) \beta _{{f_k}}^{{m_{{f_k}}}}}\int \limits _0^\infty {\sum \limits _{n = 0}^{{m_h} - 1} {\sum \limits _{k = 0}^n {\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) } \rho _r^k\frac{{{\mu ^n}}}{{n!\rho _s^n\beta _h^n}}} } {x^{k + {m_{{f_k}}} - 1}}\exp \left( { - \left( {\frac{1}{{{\beta _{{f_k}}}}} + \frac{{\mu {\rho _r}}}{{{\beta _h}{\rho _s}}}} \right) x} \right) dx\\ =&\frac{\exp \left( - \mu \big / {\beta _h}{\rho _s} \right) }{\varGamma \left( {{m_{{f_k}}}} \right) \beta _{{f_k}}^{{m_{{f_k}}}}}\sum \limits _{n = 0}^{{m_h} - 1} {\sum \limits _{k = 0}^n {\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right) } \rho _r^k\frac{{{\mu ^n}}}{{n!\rho _s^n\beta _h^n}}} {\left( {\frac{1}{{{\beta _{{f_k}}}}} + \frac{{\mu {\rho _r}}}{{{\beta _h}{\rho _s}}}} \right) ^{ - k - {m_{{f_k}}}}}\varGamma \left( {k + {m_{{f_k}}}} \right) . \end{aligned} \end{aligned}$$
(69)

where \(\mu = \max \left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\upsilon _1} - {\upsilon _2}\delta _1^{\mathrm{th}}}},\frac{{\delta _2^{\mathrm{th}}}}{{{\upsilon _2}}}} \right) \), \(\chi = \max \left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\upsilon _1} - {\upsilon _2}\delta _1^{\mathrm{th}}}},\frac{{\delta _2^{\mathrm{th}}}}{{{\upsilon _2}}}} \right) \left( {\frac{{{\rho _r}{{\left| {{f_k}} \right| }^2} + 1}}{{{\rho _s}}}} \right) \).

It is further to have \( \varphi _2^* \) computed by

$$\begin{aligned} \begin{aligned} \varphi _2^* =&1 - {F_{{{\left| {{g_{{r_k},{d_1}}}} \right| }^2}}}\left( {\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}}}} \right) \\ =&\frac{1}{{\varGamma \left( {{m_{{g_{{r_k},{d_1}}}}}} \right) }}\varGamma \left( {{m_{{g_{{r_k},{d_1}}}}},\frac{{\delta _1^{\mathrm{th}}}}{{{\rho _r}{\beta _{{g_{{r_k},{d_1}}}}}}}} \right) . \end{aligned} \end{aligned}$$
(70)

Then, the probability for the event that there are \({r_i}\) active relays in \({{\mathcal B}_{\mathcal R}}\) can be evaluated as follows:

$$\begin{aligned} \begin{aligned} \Pr \left( {\left| {{{\mathcal B}_{\mathcal R}}} \right| = i} \right) = \left( {\begin{array}{*{20}{c}} M\\ i \end{array}} \right) {\left( {{\varOmega _\theta }} \right) ^i}{\left( {1 - {\varOmega _\theta }} \right) ^{M - i}}. \end{aligned} \end{aligned}$$
(71)

Substituting result of (60) and (71) into (44), the outage probability of considered system can be computed as in Proposition 3. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thi Nguyen, TT., Do, DT., Chen, YC. et al. New look on relay selection strategies for full-duplex multiple-relay NOMA over Nakagami-m fading channels. Wireless Netw 27, 3827–3843 (2021). https://doi.org/10.1007/s11276-021-02676-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02676-1

Keywords

Navigation