Skip to main content

Advertisement

Log in

Design and Validation of Android Based Wireless Integrated Device for Ubiquitous Health Monitoring

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile wireless technologies have become more favourable for ubiquitous healthcare nowadays to provide healthcare services anytime anywhere. This paper presents Android based integrated wireless smart device and a mobile monitoring terminal to observe and analyze real time health parameters such as saturated percentage of oxygen (SpO2), heart rate and skin temperature. The device is designed and implemented using a microcontroller platform for primary processing of data and wireless communication is done through Bluetooth protocol. The developed system is clinically useful and user friendly due to its compact size, cost effectiveness, wearability and can be used widely in hospitals for post operative care, home healthcare, community healthcare and sports training. The experimental results illustrate that the mean absolute percentage error of prototype device is 0.75 % for SpO2, 1.58 % for heart rate and 0.66 % for skin temperature measurement. Correlation coefficient is also calculated to find the linear association between the standard and prototype device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al Khatib, I., Russo, G., & Nabiev, R. (2006). Performance analysis of interoperability protocols and algorithms in networks-on-chip for the next generation biomedical sensor-networks. In Proceedings of IEEE INFOCOM (pp. 23–29).

  2. http://www.glencoe.com/sites/common_assets/health_fitness/gln_health_fitness_zone/pdf/heart_rate_monitor_activities/the_heart/the_heart_activity_4.pdf. Accessed 4 Aug 2014.

  3. Batra, P., & Kapoor, R. (2010). A novel method for heart rate measurement using bioimpedance. In Proceedings of IEEE international conference on advances in recent technologies in communication and computing (ARTCom), 2010 (pp. 443–445).

  4. Jezewski, J., Roj, D., Wrobel, J., & Horoba, K. (2011). A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomedical Engineering, 10, 92.

    Google Scholar 

  5. Arcelus, A., Sardar, M., & Mihailidis, A. (2013). Design of a capacitive ECG sensor for unobtrusive heart rate measurements. In Proceedings of IEEE international conference on instrumentation and measurement technology conference (I2MTC), 2013 (pp. 407–410).

  6. Masuoka, N., Tsujioka, T., & Hara, S. (2012). Heart rate detection from waist ECG/PCG sensors for a vital signal acquisition system for athletes. In IEEE international symposium on information theory and its applications (ISITA), 2012 (pp. 189–193).

  7. Dinh, A., & Wang, T. (2010). Bandage-size non-ECG heart rate monitor using ZigBee wireless link. In Proceedings of IEEE international conference on bioinformatics and biomedical technology (ICBBT), 2010 (pp. 160–163).

  8. Yang, Y. X., Xie, B. S., Zhou, Z. X., Liu, J. N., Xue, Y. Y., & Lv, G. L. (1998). Computer analysis system of blood oxygen saturation in an animal hypoxia model. Medical and Biological Engineering and Computing, 36(3), 355–358.

    Article  Google Scholar 

  9. Fantini, S., Hueber, D., Franceschini, M. A., Gratton, E., Rosenfeld, W., Stubblefield, P. G., & Stankovic, M. R. (1999). Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Physics in Medicine and Biology, 44(6), 1543.

    Article  Google Scholar 

  10. Ashoka, R. K., George, B., Madhu, M. N., & Jagadeesh, K. V. (2011). A novel method for the measurement of oxygen saturation in arterial blood. In Proceedings of IEEE international conference on instrumentation and measurement technology conference (I2MTC), 2011 (pp. 1–5).

  11. Razi, E., & Akbari, H. (2006). A comparison of arterial oxygen saturation measured both by pulse oximeter and arterial blood gas analyzer in hypoxemic and non-hypoxemic pulmonary diseases. Turkish Respiratory Journal, 7(2), 043–047.

    Google Scholar 

  12. Davies, P., & Maconochie, I. (2009). The relationship between body temperature, heart rate and respiratory rate in children. Emergency Medicine Journal, 26(9), 641–643.

    Article  Google Scholar 

  13. Van Marken Lichtenbelt, W. D., Daanen, H. A., Wouters, L., Fronczek, R., Raymann, R. J., Severens, N. M., & Van Someren, E. J. (2006). Evaluation of wireless determination of skin temperature using iButtons. Physiology & Behavior Journal, 88(4), 489–497.

    Article  Google Scholar 

  14. Hung, K., & Zhang, Y. T. (2003). Implementation of a WAP-based telemedicine system for patient monitoring. IEEE Transactions on Information Technology in Biomedicine, 7(2), 101–107.

    Article  Google Scholar 

  15. Jovanov, E., O’Donnell Lords, A., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. Engineering in Medicine and Biology Magazine, IEEE, 22(3), 49–55.

    Article  Google Scholar 

  16. Zulkifli, N. S. A., Harun, F. C., & Azahar, N. S. (2012). XBee wireless sensor networks for Heart Rate Monitoring in sport training. In Proceedings of IEEE international conference on biomedical engineering (ICoBE), 2012 (pp. 441–444).

  17. Zulkifli, N. S. A., Harun, F. C., & Azahar, N. S. (2012). Centralized heart rate monitoring telemetry system using ZigBee wireless sensor network. In Proceedings of IEEE international conference on biomedical and health informatics (BHI), 2012 (pp. 265–268).

  18. Hii, P. C., & Chung, W. Y. (2011). A comprehensive ubiquitous healthcare solution on an Android™ mobile device. Sensors, 11(7), 6799–6815.

    Article  Google Scholar 

  19. Jara, A. J., Zamora-Izquierdo, M. A., & Skarmeta, A. F. (2013). Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE Journal on Selected Areas in Communications, 31(9), 47–65.

    Article  Google Scholar 

  20. Boulos, M. N., Wheeler, S., Tavares, C., & Jones, R. (2011). How smartphones are changing the face of mobile and participatory healthcare: An overview, with example from eCAALYX. Biomedical Engineering, 10(1), 24.

    Google Scholar 

  21. Rost, S., & Balakrishnan, H. (2006, September). Memento: A health monitoring system for wireless sensor networks. In Sensor and ad hoc communications and networks, 2006. SECON’06. 2006 3rd a nnual IEEE communications society on (Vol. 2, pp. 575–584). IEEE.

  22. Scully, C., Lee, J., Meyer, J., Gorbach, A. M., Granquist-Fraser, D., Mendelson, Y., & Chon, K. H. (2012). Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 59(2), 303–306.

    Article  Google Scholar 

  23. Bsoul, M., Minn, H., & Tamil, L. (2011). Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG. IEEE Transactions on Information Technology in Biomedicine, 15(3), 416–427.

    Article  Google Scholar 

  24. Choi, J., Ahmed, B., & Gutierrez-Osuna, R. (2012). Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 16(2), 279–286.

    Article  Google Scholar 

  25. Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.

    Article  Google Scholar 

  26. Mahalle, P. N., Anggorojati, B., Prasad, N. R., & Prasad, R. (2013). Identity authentication and capability based access control (iacac) for the internet of things. Journal of Cyber Security and Mobility, 1(4), 309–348.

    Google Scholar 

  27. http://www.nonin.com/documents/Avant%209700%20Brochure.pdf. Accessed 12 Aug 2014.

  28. http://www.gehealthcare.com/usen/oximetry/docs/TruSat%20Brochure.pdf. Accessed 12 Aug 2014.

  29. http://www.nonin.com/documents/Avant%204000%20Brochure.pdf. Accessed 14 Aug 2014.

  30. http://www.nonin.com/documents/3100%20WristOx%20Brochure.pdf. Accessed 14 Aug 2014.

  31. http://www.spomedical.com/downloads/7500help-May-07_English.pdf. Accessed 4 Sep 2014.

  32. http://www.ihealthlabs.com/files/9414/0192/1752/wireless_pulse_oximeter_User_Manual.pdf. Accessed 4 Sep 2014.

  33. http://www.amazon.in/iHealth-PO3-Pulse-Oximeter/dp/B00D7MDXCU. Accessed 6 September 2014.

  34. http://www.tiathermometer.com/comparing.html. Accessed 4 Sep 2014.

  35. http://www.ebay.in/itm/Infrared-NON-CONTACT-Thermometer-Instant-and-AcurateTempratureReading/321538269567?pt=IN_Care_Instruments&hash=item4add2ca17f. Accessed 9 Sep 2014.

  36. http://store.alivecor.com/collections/heart-monitors/products/alivecor-heart-monitor-for-iphone-5. Accessed 16 Sep 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Jain, N. Design and Validation of Android Based Wireless Integrated Device for Ubiquitous Health Monitoring. Wireless Pers Commun 84, 3157–3170 (2015). https://doi.org/10.1007/s11277-015-2792-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2792-5

Keywords

Navigation