Skip to main content
Log in

Noisy Image Reconstruction Via Fast Linearized Lagrangian Dual Alternating Direction Method of Multipliers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, an efficient noisy image reconstruction algorithm based on compressed sensing in the wavelet domain is proposed. The new algorithm is composed of three steps. Firstly, the noisy image is represented with its coefficients using the discrete wavelet transform. Secondly, the measurement is obtained by using a random Gaussian matrix. Finally, a fast linearized Lagrangian dual alternating direction method of multipliers is proposed to reconstruct the sparse coefficients, which will be converted by the inverse discrete wavelet transform to the reconstructed image. Our experimental results show that the proposed reconstruction algorithm yields a slightly higher peak signal to noise ratio reconstructed image as well as a much faster convergence rate as compared to some existing reconstruction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MATH  MathSciNet  Google Scholar 

  2. Donoho, D. L., & Tsaig, Y. (2006). Extensions of compressed sensing. Signal Processing, 86(3), 533–548.

    Article  MATH  Google Scholar 

  3. Jiao, L. C., Yang, S. Y., Liu, F., et al. (2011). Development and prospect of compressive sensing. Acta Electronicas Sinica, 39(7), 1651–1662. (in Chinese).

    Google Scholar 

  4. Candes, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  5. Davenport, M., Duarte, M., Eldar, Y., et al. (2012). Compressed sensing: theory and applications. Cambridge: Cambridge University Press.

    Google Scholar 

  6. Romberg, J. (2008). Imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2), 14–20.

    Article  Google Scholar 

  7. Yun, S., & Toh, K. C. (2011). A coordinate gradient descent method for \(\ell _1 \)-regularized convex minimization. Computational Optimization and Applications, 48(1), 273–307.

    Article  MATH  MathSciNet  Google Scholar 

  8. Becker, S., Bobin, J., & Candès, E. (2011). NESTA: A fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1), 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  9. van den Berg, E., & Friedlander, M. P. (2008). Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31(2), 890–912.

    Article  MATH  MathSciNet  Google Scholar 

  10. Figueiredo, M. A. T., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–598.

    Article  Google Scholar 

  11. Bioucas-Dias, J., & Figueiredo, M. (2007). A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Transactions on Image Processing, 16(12), 2992–3004.

    Article  MathSciNet  Google Scholar 

  12. Hale, E. T., Yin, W., & Zhang, Y. (2008). Fixed-point continuation for \(\ell _1 \)-minimization: methodology and convergence. SIAM Journal on Optimization, 19(3), 1107–1130.

    Article  MATH  MathSciNet  Google Scholar 

  13. Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage/thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

    Article  MATH  MathSciNet  Google Scholar 

  14. Afonso, M., Bioucas, D. J., & Figueiredo, M. (2010). Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 19(9), 2345–2356.

    Article  MathSciNet  Google Scholar 

  15. Afonso, M., Bioucas, D. J., & Figueiredo, M. (2011). An augmented Lagrangian approach to the constrained optimization formulation of image inverse problems. IEEE Transactions on Image Processing, 20(3), 681–695.

    Article  MathSciNet  Google Scholar 

  16. Aybat, N. S., & Iyengar, G. (2012). A first-order augmented Lagrangian method for compressed sensing. SIAM Journal on Optimization, 22(2), 429–459.

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldfarb, D., Ma, S. Q., & Scheinberg, K. (2012). Fast alternating linearization methods for minimizing the sum of two convex functions. Mathematical Programming, 1, 1–34.

    Google Scholar 

  18. Wang, Y., Yang, J. F., Yin, W. T., et al. (2008). A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Scientific, 1, 248–272.

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, J. F., Zhang, Y., & Yin, W. T. (2010). A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Processing, 4(2), 288–297.

    Article  Google Scholar 

  20. Yang, J. F., & Zhang, Y. (2011). Alternating direction algorithm for \(\ell _1 \)-problems in compressed sensing. SIAM Journal on Scientific Computing, 33(1), 250–278.

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiao, Y. H., Zhu, H., & Wu, S. Y. (2013). Primal and dual alternating direction algorithms for \(\ell _1 -\ell _1 \)-norm minimization problems in compressive sensing. Computational Optimization and Applications, 50(1), 1–19.

    Google Scholar 

  22. Xiao, Y. H., & Song, H. N. (2012). An inexact alternating directions algorithm for constrained total variation regularized compressive sensing problems. Journal of Mathematical Imaging Vision, 44(2), 114–127.

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang, J. F., & Yuan, X. M. (2013). Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281), 301–329.

    Article  MATH  MathSciNet  Google Scholar 

  24. Tomioka, R., & Sugiyama, M. (2009). Dual augmented Lagrangian method for efficient sparse reconstruction. IEEE Signal Processing Letters, 16(12), 1067–1070.

    Article  Google Scholar 

  25. Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4, 303–320.

    Article  MATH  MathSciNet  Google Scholar 

  26. Gabay, D., & Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Computers and Mathematics with Applications, 2(1), 17–40.

    Article  MATH  Google Scholar 

  27. Glowinski, R., & Tallec, P. L. (1989). Augmented Lagrangian and operator splitting methods in nonlinear mechanics. SIAM Studies in Applied Mathematics. Phildelphia, PA: SIAM.

    Book  Google Scholar 

  28. Ji, S. H., Xue, Y., & Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6), 2346–2356.

    Article  MathSciNet  Google Scholar 

  29. Eckstein, J., & Bertsekas, D. (1992). On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 55, 293–318.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973 Program) (No. 2011CB302903), the National Natural Science Foundation of China (Nos. 60971129, 61070234, 61271335, 61271240), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions–Information and Communication Engineering, the Research and Innovation Project for College Graduates of Jiangsu Province (No. CXZZ12_0469), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 13KJB510020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Zhen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZZ., Yang, Z. Noisy Image Reconstruction Via Fast Linearized Lagrangian Dual Alternating Direction Method of Multipliers. Wireless Pers Commun 82, 143–156 (2015). https://doi.org/10.1007/s11277-014-2199-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2199-8

Keywords

Navigation