Skip to main content
Log in

Radio Resource Allocation for Scalable Video Services Over Wireless Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Good quality video services always require higher bandwidth. Hence, to provide the video services e.g., multicast/broadcast services (MBSs) and unicast services along with the existing voice, internet, and other background traffic services over the wireless cellular networks, it is required to efficiently manage the wireless resources in order to reduce the overall forced call termination probability, to maximize the overall service quality, and to maximize the revenue. Fixed bandwidth allocation for the MBS sessions either reduces the quality of the MBS videos and bandwidth utilization or increases the overall forced call termination probability and of course the handover call dropping probability as well. Scalable video coding (SVC) technique allows the variable bit rate allocation for the video services. In this paper, we propose a bandwidth allocation scheme that efficiently allocates bandwidth among the MBS sessions and the non-MBS traffic calls (e.g., voice, unicast, internet, and other background traffic). The proposed scheme reduces the bandwidth allocation for the MBS sessions during the congested traffic condition only to accommodate more calls in the system. Instead of allocating fixed bandwidths for the MBS sessions and the non-MBS traffic, our scheme allocates variable bandwidths for them. However, the minimum quality of the videos is guaranteed by allocating minimum bandwidth for them. Using the mathematical and numerical analyses, we show that the proposed scheme maximizes the bandwidth utilization and significantly reduces the overall forced call termination probability as well as the handover call dropping probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. UDCAST WiMAX TV Home Page. [Online]. Available: http://www.udcast.com/solutions/OLD/udcast_solutions_tv_wimax.htm.

  2. Wang, J., Venkatachalam, M., & Fang, Y. (2007). System architecture and cross-layer optimization of video broadcast over WiMAX. IEEE Journal on Selected Areas in Communications, 25(4), 712–721.

    Article  Google Scholar 

  3. Chowdhury, M. Z., Jang, Y. M., & Haas, Z. J. (2011). Cost-effective frequency planning for capacity enhancement of femtocellular networks. Wireless Personal Communications, 60(1), 83–104.

    Article  Google Scholar 

  4. Sharangi, S., Krishnamurti, R., & Hefeeda, M. (2011). Energy-efficient multicasting of scalable video streams over WiMAX networks. IEEE Transactions on Multimedia, 13(1), 102–115.

    Article  Google Scholar 

  5. Ding, J.-W., Chen, Z.-Y., Lee, W.-T., & Chen, W.-M. (2009). Adaptive bandwidth allocation for layered video streams over wireless broadcast channels. In Proceedings of international conference on communications and networking (pp. 1–5).

  6. Lee, J. H., Pack, S., Kwon, T., & Choi, Y. (2011). Reducing handover delay by location management in mobile WiMAX multicast and broadcast services. IEEE Transactions on Vehicular Technology, 60(2), 605–617.

    Article  Google Scholar 

  7. Lin, Y.-B. (2001). A multicast mechanism for mobile networks. IEEE Communications Letters, 5(11), 450–452.

    Article  Google Scholar 

  8. Lin, C.-T., & Ding, J.-W. (2006). CAR: a low latency video-on-demand broadcasting scheme for heterogeneous receivers. IEEE Transaction on Broadcasting, 52(3), 336–349.

    Article  Google Scholar 

  9. Ding, J.-W., Deng, D.-J., Wu, T.-Y., & Chen, H.-H. (2010). Quality-aware bandwidth allocation for scalable on-demand streaming in wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 366–376.

    Article  Google Scholar 

  10. Wang, Y., Chau, L.-P., & Yap, K.-H. (2010). Bit-rate allocation for broadcasting of scalable video over wireless networks. IEEE Transactions on Broadcasting, 56(3), 288–295.

    Article  Google Scholar 

  11. Liu, J., Li, B., Hou, Y. T., & Chlamtac, I. (2004). On optimal layering and bandwidth allocation for multisession video broadcasting. IEEE Transactions on Wireless Communications, 3(2), 656–667.

    Article  Google Scholar 

  12. Chowdhury, M. Z., Jang, Y. M., & Haas, Z. J. (2013). Call admission control based on adaptive bandwidth allocation for multi-class services in wireless networks. IEEE/KICS Journal of Communications and Networks, 15(1), 15–24.

    Article  Google Scholar 

  13. Vergados, D. D. (2007). Simulation and modeling bandwidth control in wireless healthcare information systems. SIMULATION, 83(4), 347–364.

    Article  Google Scholar 

  14. Zhuang, W., Bensaou, B., & Chua, K. C. (2000). Adaptive quality of service handoff priority scheme for mobile multimedia networks. IEEE Transactions on Vehicular Technology, 49(2), 494–505.

    Article  Google Scholar 

  15. Cruz-Perez, F. A., & Ortigoza-Guerrero, L. (2004). Flexible resource allocation strategies for class-based QoS provisioning in mobile networks. IEEE Transactions on Vehicular Technology, 53(3), 805–819.

    Article  Google Scholar 

  16. Habib, I., Sherif, M., Naghshineh, M., & Kermani, P. (2003). An adaptive quality of service channel borrowing algorithm for cellular networks. International Journal of Communication Systems, 16(8), 759–777.

    Article  Google Scholar 

  17. Schwartz, M. (2005). Mobile wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Electronics and Telecommunications Research Institute (ETRI), Korea. This work was also supported by the IT R&D program of MKE/KEIT [10035362, Development of Home Network Technology based on LED-ID].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Min Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, M.Z., Nguyen, T., Kim, YI. et al. Radio Resource Allocation for Scalable Video Services Over Wireless Cellular Networks. Wireless Pers Commun 74, 1061–1079 (2014). https://doi.org/10.1007/s11277-013-1344-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1344-0

Keywords

Navigation