Skip to main content
Log in

Optimization of Time-Domain Combining Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In cognitive radio networks, the secondary users take chances to access the spectrum without causing interference to the primary users so that the spectrum access is dynamic and somewhat opportunistic. Therefore, spectrum sensing is of significant importance. In this paper, we propose a novel time-domain combining cooperative spectrum sensing framework, in which the time consumed by reporting for one secondary user is also utilized for other secondary users’ sensing. We focus on the optimal sensing settings of the proposed sensing scheme to maximize the secondary users’ throughput and minimize the average sensing error probability under the constraint that the primary users are sufficiently protected. Some simple algorithms are also derived to calculate the optimal solutions. Simulation results show that fundamental improvement of the achievable throughput and sensing performance can be obtained by optimal sensing settings. In addition, our proposed scheme outperforms the general frame structure on either achievable throughput or the performance of average sensing error probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McHenry, M. A. (2005). NSF spectrum occupancy measurements project summary. Shared Spectrum Company Report, Aug.

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  3. Chen, Q., Motani, M., Wong, W. C., & Nallanathan, A. (2011). Cooperative spectrum sensing strategies for cognitive radio mesh networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 56–67.

    Article  Google Scholar 

  4. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings of the IEEE ASILOMAR (pp. 772–776).

  5. Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing in cognitive radio networks. In Proceedings of the IEEE DySPAN (pp. 131–136).

  6. Yücek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  7. Vu-Van, H., & Koo, I. (2011). Cooperative spectrum sensing with collaborative users using individual sensing credibility for cognitive radio network. IEEE Transactions on Consumer Electronics, 57(2), 320–326.

    Article  Google Scholar 

  8. Ghasemi, A., & Sousa, E. S. (2007). Opportunistic spectrum access in fading channels through collaborative sensing. Journal of Communications, 2(2), 71–82.

    Article  Google Scholar 

  9. Ghasemi, A., & Sousa, E. S. (2007). Asymptotic performance of collaborative spectrum sensing under correlated log-normal shadowing. IEEE Communications Letters, 11(1), 34–36.

    Article  Google Scholar 

  10. Pei, Y., Liang, Y.-C., The, K. C., & Li, K. H. (2009). Sensing-throughput tradeoff for cognitive radio networks: A multiple-channel scenario. In PIMRC (pp. 1257–1261).

  11. Liang, Y.-C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  12. Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2, 4–17.

    Article  Google Scholar 

  13. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.

    Article  Google Scholar 

  14. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part II: Multiuser user networks. IEEE Transactions on Wireless Communications, 6(6), 2214–2222.

    Article  Google Scholar 

  15. Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2008). Wideband spectrum sensing in cognitive radio networks. In ICC (pp. 901–906).

  16. Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in dynamic spectrum access networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.

    Article  MathSciNet  Google Scholar 

  17. Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 2(1), 18–27.

    Article  Google Scholar 

  18. Ganesan, G., Li, Y., Bing, B., & Li, S. (2008). Spatiotemporal sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 5–12.

    Article  Google Scholar 

  19. Duan, D., Yang, L., & Principe, J. C. (2010). Cooperative diversity of spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing, 58(6), 3218–3227.

    Article  MathSciNet  Google Scholar 

  20. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Article  Google Scholar 

  21. Peh, E., & Liang, Y.-C. (2007). Optimization for cooperative spectrum sensing in cognitive radio networks. In WCNC (pp. 27–32).

  22. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radio. In Proceedings of the asilomar conference on signals, systems, and computers (pp. 772–776).

Download references

Acknowledgments

This work is supported by the Jiangsu Province Natural Science Foundation under Grant BK2011002, National Fundament Research of China (973 No. 2009CB3020402), Natural Science Foundation of Jiangsu Province of China (No. BK2009056), National Natural Science Foundation of China (No. 61072044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Hu.

Appendices

Appendix A

1.1 Proof of Theorem 1

According to (9) and (10), taking the first derivative of \(p_f \) with respect to \(p_d \), we have

$$\begin{aligned} \frac{dp_f }{dp_d }\!&= \!{\frac{dp_f }{d\lambda }}/{\frac{dp_d }{d\lambda }} \nonumber \\ \!&= \!\sqrt{2\gamma \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} \!+\!1}\exp \left\{ \frac{T_s f_s }{4\left( {2\gamma \sum \nolimits _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} \!+\!1} \right) }\left[ {\frac{\lambda }{\sigma ^{2}}\!-\!\sum _{i=1}^N {\omega _i \left( {\left| {h_i } \right| ^{2}\gamma \!+\!1} \right) } } \right] ^{2}\right. \nonumber \\&\quad \left. -\frac{T_s f_s }{4}\left( {\frac{\lambda }{\sigma ^{2}}-\sum _{i=1}^N {\omega _i }} \right) ^{2} \right\} \nonumber \\&> 0 \end{aligned}$$
(44)

Thus, \(p_f \) is an increasing function of \(p_d \).

According to (32), \(\frac{dQ_f }{dQ_d }>0\). Then, according to (31), \(\frac{d\mathfrak R }{dQ_d }<0\). Therefore, Theorem 1 has been proven that \(\mathfrak R \) is a decreasing function of \(Q_d \).

Appendix B

1.1 Proof of Theorem 2

According to (42), taking the second derivative of \(p_f \) with respect to \(p_d \), we have

$$\begin{aligned} \frac{d^{2}p_f }{dp_d^2 }&= \frac{d}{dp_d }\left( {\frac{dp_f }{dp_d }} \right) =\frac{d}{d\lambda }\left( {\frac{dp_f }{dp_d }} \right) 1\Big /\frac{dp_d }{d\lambda } \nonumber \\&= \frac{dp_f }{dp_d }\sqrt{\pi T_s f_s \left( {2\gamma \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1} \right) }\left[ {\left( {\frac{\lambda }{\sigma ^{2}}-\sum _{i=1}^N {\omega _i } } \right) \!-\!\frac{\left( {\frac{\lambda }{\sigma ^{2}}\!-\!\sum \nolimits _{i=1}^N {\omega _i \left( {\left| {h_i } \right| ^{2}\gamma +1} \right) } } \right) }{2\gamma \sum \nolimits _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1}} \right] \nonumber \\&\quad \times \exp \left\{ {\frac{\left[ {\frac{\lambda }{\sigma ^{2}}-\sum _{i=1}^N {\omega _i \left( {\left| {h_i } \right| ^{2}\gamma +1} \right) } } \right] ^{2}T_s f_s }{4\left( {2\gamma \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1} \right) }} \right\} \end{aligned}$$
(45)

According to (43), we can rewrite (45) as

$$\begin{aligned} \frac{d^{2}p_f }{dp_d^2 }&= \frac{dp_f }{dp_d }\sqrt{\pi }\gamma \left[ 2\sqrt{2}\mathbb{Q }^{-1}\left( {p_d } \right) \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}}\right. \nonumber \\&\left. +\sqrt{T_s f_s \left( {2\gamma \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1} \right) }\sum _{i=1}^N {\omega _i \left| {h_i } \right| ^{2}} \right] \nonumber \\&\quad \times \exp \left\{ {\frac{1}{2}\left[ {\mathbb{Q }^{-1}\left( {p_d } \right) } \right] ^{2}} \right\} \end{aligned}$$
(46)

For \(0\!<\!p_d \!<\!0.5, \mathbb{Q }^{-1}({p_d})\!>\!0\). Thus, \(2\sqrt{2}\mathbb{Q }^{-1}\left( {p_d } \right) \!+\!\sqrt{T_s f_s ({2\gamma +1})}>0\); For \(0.5<p_d <1, \mathbb{Q }^{-1}({p_d})<0\). Since \(u=T_s f_s \) is a large value, there exists a point \(p_d^*\), for \(0.5<p_d <p_d^*, 2\sqrt{2}\mathbb{Q }^{-1}({p_d })+ \sqrt{T_s f_s ({2\gamma +1})}>0\), where \(p_d^*\) approximates to 1 but less than 1. Therefore, we have \(2\sqrt{2}\mathbb{Q }^{-1}\left( {p_d } \right) +\sqrt{T_s f_s ({2\gamma +1})}>0\) for \(p_d \in ({0,p_d^*})\).

Obviously, in the range \(p_d \in ({0,p_d^*})\),

$$\begin{aligned} 2\sqrt{2}\mathbb{Q }^{-1}\left( {p_d } \right) \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +\sqrt{T_s f_s \left( {2\gamma \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1} \right) }\sum _{i=1}^N {\omega _i \left| {h_i } \right| ^{2}} >0 \end{aligned}$$
(47)

Therefore, \(\frac{d^{2}p_f }{dp_d^2 }>0\), and \(p_f \) is a concave function of \(p_d \) in the range \(p_d \in \left( {0,p_d^*} \right) \).

From Fig. 10, we can see that \(\frac{dp_f }{dp_d }-\frac{p_f }{p_d }>0, \frac{1-p_f }{1-p_d }-\frac{dp_f }{dp_d }>0\). Obviously, it can be derived geometrically.

Fig. 10
figure 10

\(p_f\) versus \(p_d\) in the range \(p_d \in ({0,p_d^*})\)

According to (40), \(\frac{d\Omega (p_d )}{dp_d }>0\). Therefore, Theorem 2 has been proven that \(\Omega (p_d )\) is an increasing function of \(p_d \).

Appendix C

1.1 Proof of Theorem 3

It is easy to find that

$$\begin{aligned} \mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{1-p_f }{1-p_d }\approx \mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{dp_f }{dp_d } \end{aligned}$$
(48)

According to (39), we have

$$\begin{aligned} \mathop {\lim }\limits _{p_d \rightarrow p_d^*} \Omega (p_d )&\approx \left( {\mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{dp_f }{dp_d }} \right) ^{N-n}\mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{dp_f }{dp_d }\frac{p(H_0 )}{p(H_1 )}-1\nonumber \\&= \left( {\mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{dp_f }{dp_d }} \right) ^{N-n+1}\frac{p(H_0 )}{p(H_1 )}-1 \end{aligned}$$
(49)

Since

$$\begin{aligned} \mathbb{Q }^{-1}(p_d^*)=-\frac{\sqrt{T_s f_s \left( {2\gamma \sum \nolimits _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1} \right) }\sum \nolimits _{i=1}^N {\omega _i \left| {h_i } \right| ^{2}} }{2\sqrt{2}\sum \nolimits _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} } \end{aligned}$$
(50)

According to (42),

$$\begin{aligned} \mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{dp_f }{dp_d }=\sqrt{2\gamma \sum _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} +1}\exp \left\{ {\frac{T_s f_s \gamma }{8}\frac{\left( {\sum \nolimits _{i=1}^N {\omega _i \left| {h_i } \right| ^{2}} } \right) ^{2}}{\sum \nolimits _{i=1}^N {\omega _i^2 \left| {h_i } \right| ^{2}} }} \right\} >1 \end{aligned}$$
(51)

Therefore,

$$\begin{aligned} \mathop {\lim }\limits _{p_d \rightarrow p_d^*} \Omega (p_d )=\left( {\mathop {\lim }\limits _{p_d \rightarrow p_d^*} \frac{dp_f }{dp_d }} \right) ^{N-n+1}\frac{p(H_0 )}{p(H_1 )}-1>0 \end{aligned}$$
(52)

If \(\Omega (\mu _1 )>0\) is satisfied, according to Theorem 2, in the range \(p_d \in \left( {\mu _1 ,p_d^*} \right) , \Omega (p_d )>0\). According to (38), \(Q_e \) is a increasing function in the range \(p_d \in \left( {\mu _1 ,p_d^*} \right) \). Therefore, \(\mu _1 \) is the optimal solution for problem (35).

If \(\Omega (\mu _1 )<0\) is satisfied, according to Theorem 2, in the range \(p_d \in \left( {\mu _1 ,\mu _2 } \right) , \Omega (p_d )<0\); in the range \(p_d \in \left( {\mu _2 ,p_d^*} \right) , \Omega (p_d )>0\). According to (38), \(Q_e \) is a decreasing function in the range \(p_d \in \left( {\mu _1 ,\mu _2 } \right) \), and is an increasing function in the range \(p_d \in \left( {\mu _2 ,p_d^*} \right) \). Therefore, \(\mu _2 \) is the optimal solution for problem (35).

Thus, Theorem 3 is proved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Xu, Y. & Li, N. Optimization of Time-Domain Combining Cooperative Spectrum Sensing in Cognitive Radio Networks. Wireless Pers Commun 72, 2229–2249 (2013). https://doi.org/10.1007/s11277-013-1145-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1145-5

Keywords

Navigation