Skip to main content
Log in

Transient analysis of enhanced hybrid spectrum access for QoS provisioning in multi-class cognitive radio networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

A Correction to this article was published on 23 April 2024

This article has been updated

Abstract

Cognitive radio networks (CRNs) offer a promising solution for improving spectrum utilization. However, ensuring quality of service (QoS) for heterogeneous secondary users (SUs) during spectrum handoff, particularly under high primary network traffic, poses challenges. This study develops a Markov-based analytical model to evaluate the gain of a non-switching spectrum handoff technique using a hybrid interweave-underlay spectrum access strategy, considering sensing errors. The proposed model assesses the effects of the hybrid spectrum access method for prioritized traffic across multiple SU classes, aiming to meet QoS requirements for delay-sensitive traffic. The study examines the CRN’s short-term behavior and realistic queueing scenarios by analyzing the system’s transient dynamics. Different spectrum access methods are compared for evaluation purposes. The analysis focuses on evaluating the effectiveness of the enhanced hybrid spectrum access scheme compared to individual interweave and hybrid interweave-underlay spectrum access strategies in terms of QoS provisioning for heterogeneous SUs. The results demonstrate increased throughput and improved spectrum utilization with the suggested scheme, affirming its suitability for satisfying QoS requirements for both delay-sensitive and delay-tolerant users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  1. Amjad, M., Rehmani, M. H., & Mao, S. (2018). Wireless multimedia cognitive radio networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(2), 1056–1103.

    Article  Google Scholar 

  2. Paramita, S., Bebartta, H.N.D., & Pattanayak, P. (2021). IoT based healthcare monitoring system using 5G communication and machine learning models. In: Patgiri, R. Biswas, A. Roy, P. (eds) Health informatics: A computational perspective in healthcare (Vol. 932, pp. 159–182), Springer.

  3. Aijaz, A., & Aghvami, A. H. (2015). Cognitive machine-to-machine communications for internet-of-things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.

    Article  Google Scholar 

  4. Somov, A., Dupont, C., & Giaffreda, R. (2013). Supporting smart-city mobility with cognitive Internet of Things. In 2013 Future Network & Mobile Summit, pp. 1–10.

  5. Khasawneh, M., Azab, A., Alrabaee, S., Sakkal, H., & Bakhit, H. H. (2023). Convergence of IoT and cognitive radio networks: A survey of applications, techniques, and challenges. IEEE Access, 11, 71097–71112.

    Article  Google Scholar 

  6. Liang, Y.-C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  7. El Tanab, M., & Hamouda, W. (2017). Resource allocation for underlay cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 19(2), 1249–1276.

    Article  Google Scholar 

  8. Zheng, K., Jia, X., Chi, K., & Liu, X. (2023). DDPG-based joint time and energy management in ambient backscatter-assisted hybrid underlay CRNs. IEEE Transactions on Communications, 71(1), 441–456.

    Article  Google Scholar 

  9. Shakeel, A., Hussain, R., Iqbal, A., Khan, I. L., Hasan, Q. U., & Malik, S. A. (2019). Analysis of efficient spectrum handoff in a multi-class hybrid spectrum access cognitive radio network using Markov modelling. Sensors, 19(19), 4120.

    Article  Google Scholar 

  10. Iqbal, A., Hussain, R., Shakeel, A., Khan, I. L., Javed, M. A., Hasan, Q. U., Lee, B. M., & Malik, S. A. (2021). Enhanced spectrum access for QoS provisioning in multi-class cognitive D2D communication system. IEEE Access, 9, 33608–33624.

    Article  Google Scholar 

  11. Thakur, P., Kumar, A., Pandit, S., Singh, G., & Satashia, S. N. (2018). Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques. Wireless Networks, 24(6), 2005–2015.

    Article  Google Scholar 

  12. Chu, T. M. C., & Zepernick, H.-J. (2018). Optimal power allocation for hybrid cognitive cooperative radio networks with imperfect spectrum sensing. IEEE Access, 6, 10365–10380.

    Article  Google Scholar 

  13. Balapuwaduge, I. A. M., Li, F. Y., & Pla, V. (2018). Dynamic spectrum reservation for CR networks in the presence of channel Failures: Channel allocation and reliability analysis. IEEE Transactions on Wireless Communications, 17(2), 882–898.

    Article  Google Scholar 

  14. Khan, A. U., Abbas, G., Abbas, Z. H., Baker, T., Waqas, M. (2020). Spectrum efficiency in CRNs using hybrid dynamic channel reservation and enhanced dynamic spectrum access. Ad Hoc Networks, 107, 102246.

    Article  Google Scholar 

  15. Khan, A. U., Abbas, G., Abbas, Z. H., Khan, W. U., Waqas, M. (2021). Spectrum utilization efficiency in CRNs with hybrid spectrum access and channel reservation: A comprehensive analysis under prioritized traffic. Future Generation Computer Systems, 125, 726–742.

    Article  Google Scholar 

  16. Goel, S., & Kulshrestha, R. (2020). Channel allocation and ultra-reliable communication in CRNs with heterogeneous traffic and retrials: A dependability theory-based analysis. Computer Communications, 158, 51–63.

    Article  Google Scholar 

  17. Balapuwaduge, I.A.M., & Li, F.Y. (2018). A joint time-space domain analysis for ultra-reliable communication in 5G networks. In 2018 IEEE International Conference on Communications (ICC), pp. 1–6

  18. Bayrakdar, M. E., & Çalhan, A. (2017). Improving spectrum handoff utilization for prioritized cognitive radio users by exploiting channel bonding with starvation mitigation. AEU-International Journal of Electronics and Communications, 71, 181–191.

    Google Scholar 

  19. Zhang, L., Song, T., Wu, M., Bao, X., Guo, J., & Hu, J. (2015). Traffic-adaptive proactive spectrum handoff strategy for graded secondary users in cognitive radio networks. Chinese Journal of Electronics, 24(4), 844–851.

    Article  Google Scholar 

  20. Wu, Y., Hu, F., Kumar, S., Guo, M., & Bao, K. (2013). Spectrum handoffs with mixed-priority queueing model over cognitive radio networks. In 2013 IEEE Global Conference on Signal and Information Processing, pp. 1194–1197.

  21. El Azaly, N. M., Badran, E. F., Kheirallah, H. N., & Farag, H. H. (2021). Performance analysis of centralized dynamic spectrum access via channel reservation mechanism in cognitive radio networks. Alexandria Engineering Journal, 60(1), 1677–1688.

    Article  Google Scholar 

  22. Chu, T. M. C., Phan, H., & Zepernick, H.-J. (2014). Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks. IEEE Transactions on Communications, 62(7), 2183–2197.

    Article  Google Scholar 

  23. Biagi, M., & Cuomo, F. (2012). Primary and secondary nodes coexistence through opportunistic MIMO cognitive radio. In 2012 IEEE Globecom Workshops, pp. 925–930. IEEE

  24. Biagi, M., & Cuomo, F. (2013). An opportunistic access scheme through distributed interference control for MIMO cognitive nodes. IEEE Transactions on Wireless Communications, 12(12), 6500–6513.

    Article  Google Scholar 

  25. Tang, S., & Mark, B. L. (2009). Modeling and analysis of opportunistic spectrum sharing with unreliable spectrum sensing. IEEE Transactions on Wireless Communications, 8(4), 1934–1943.

    Article  Google Scholar 

  26. El-Sherif, A. A., & Liu, K. J. R. (2011). Joint design of spectrum sensing and channel access in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(6), 1743–1753.

    Article  Google Scholar 

  27. Salameh, O., De Turck, K., Fiems, D., Bruneel, H., & Wittevrongel, S. (2018). Performance analysis of a cognitive radio network with imperfect spectrum sensing. IEICE Transactions on Communications, E101(B1), 213–222.

    Article  Google Scholar 

  28. Agrawal, S. K., Samant, A., & Yadav, S. K. (2022). Spectrum sensing in cognitive radio networks and metacognition for dynamic spectrum sharing between radar and communication system: A review. Physical Communication, 52, 101673.

    Article  Google Scholar 

  29. Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors, 19(1), 126.

    Article  Google Scholar 

  30. Alqahtani, A. S., Changalasetty, S. B., Parthasarathy, P., Thota, L. S., & Mubarakali, A. (2023). Effective spectrum sensing using cognitive radios in 5G and wireless body area networks. Computers and Electrical Engineering, 105, 108493.

    Article  Google Scholar 

  31. Zhang, L., & Duan, L. (2022). Modeling and analysis of opportunistic spectrum access schemes in cognitive cellular networks under imperfect sensing. In ITM Web of Conferences, vol. 47 . EDP Sciences

  32. Kulshrestha, R. (2022). Analysis of spectrum sensing and spectrum access in cognitive radio networks with heterogeneous traffic and p-retry buffering. IEEE Transactions on Mobile Computing, 21(7), 2318–2331.

    Google Scholar 

  33. Kalil, M. A., Al-Mahdi, H., Hammam, H., & Saroit, I. A. (2017). A buffering and switching scheme for admission control in cognitive radio networks. IEEE Wireless Communications Letters, 6(3), 358–361.

    Article  Google Scholar 

  34. Falcão, M. R. M., Balieiro, A. M., & Dias, K. L. (2018). A flexible-bandwidth model with channel reservation and channel aggregation for three-layered cognitive radio networks. Computer Networks, 135, 213–225.

    Article  Google Scholar 

  35. Chu, T.M.C., Zepernick, H.-J., & Phan, H. (2015). Channel reservation for dynamic spectrum access of cognitive radio networks with prioritized traffic. In 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 883–888. IEEE

  36. Goel, S., & Kulshrestha, R. (2022). Queueing based spectrum management in cognitive radio networks with retrial and heterogeneous service classes. Journal of Ambient Intelligence and Humanized Computing, 13(5), 2429–2437.

    Article  Google Scholar 

  37. Goel, S., & Kulshrestha, R. (2022). Dependability-based analysis for ultra-reliable communication in heterogeneous traffic cognitive radio networks with spectrum reservation. Wireless Personal Communications, 127(4), 3015–3039.

    Article  Google Scholar 

  38. Stevenson, C.R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S.J., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138

Download references

Acknowledgements

The authors are thankful to the referees and chief editor for their insightful remarks for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhee Kulshrestha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshrestha, R., Goel, S. & Balhara, P. Transient analysis of enhanced hybrid spectrum access for QoS provisioning in multi-class cognitive radio networks. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03715-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03715-3

Keywords

Navigation