Skip to main content

Advertisement

Log in

Power allocation algorithms for massive MIMO systems with multi-antenna users

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Modern 5G wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This concept entails using an antenna array at a base station to concurrently service many mobile devices that have several antennas on their side. In this field, a significant role is played by the precoding (beamforming) problem. During downlink, an important part of precoding is the power allocation problem that distributes power between transmitted symbols. In this paper, we consider the power allocation problem for a class of precodings that asymptotically work as regularized zero-forcing. Under some realistic assumptions, we simplify the spectral efficiency functional and obtain tractable expressions for it. We prove that equal power allocation provides optimum for the simplified functional with total power constraint (TPC). We propose low-complexity Intersection methods (IM) that improve equal power allocation in the case of per-antenna power constraints (PAPC). On simulations using Quadriga, the proposed IM method in combination with widely-studied water filling (WF) shows a significant gain in spectral efficiency while using a similar computing time as the reference equal power (EP) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility

The datasets generated and analysed during the current study are available in the GitHub repository, https://github.com/eugenbobrov/Power-Allocation-Algorithms-for-Massive-MIMO-Systems-with-Multi-Antenna-Users

Abbreviations

ARZF:

Adaptive regularized zero-forcing

BP:

Baseline power

CD:

Conjugate detection

CDF:

Cumulative density function

CSI:

Channel state information

EESM:

Exponential effective SINR mapping

EP:

Equal power

ESM:

Effective SINR mapping

IM:

Intersection method

IRC:

Interference rejection combiner

LOS:

Line-of-sight

MCS:

Modulation and coding scheme

MIMO:

Multiple-input multiple-output

MMSE:

Minimum mean squared error

MRT:

Maximum ratio transmission

MSE:

Mean squared error

NLOS:

Non-line-of-sight

OFDM:

Orthogonal frequency-division multiplexing

PA:

Power allocation

PAPC:

Per-antenna power constraints

PHY:

Physical layer

RZF:

Regularized zero-forcing

SE:

Spectral efficiency

SINR:

Signal-to-interference-and-noise

SVD:

Singular-value-decomposition

TDD:

Time division duplex

TPC:

Total power constraints

UE:

User equipment

WF:

Water filling

ZF:

Zero-forcing

References

  1. Andrews, Jeffrey G., Buzzi, Stefano, Choi, Wan, Hanly, Stephen V., Lozano, Angel, Soong, Anthony CK., & Zhang, Jianzhong Charlie. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Marzetta, Thomas L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  3. Ge, Xiaohu, Zi, Ran, Wang, Haichao, Zhang, Jing, & Jo, Minho. (2016). Multi-user massive MIMO communication systems based on irregular antenna arrays. IEEE Transactions on Wireless Communications, 15(8), 5287–5301.

    Article  Google Scholar 

  4. Le, Long, & Hossain, Ekram. (2007). Multihop cellular networks: Potential gains, research challenges, and a resource allocation framework. IEEE Communications Magazine, 45(9), 66–73.

    Article  Google Scholar 

  5. Phan, Khoa T., Le-Ngoc, Tho, Vorobyov, Sergiy A., & Tellambura, Chintha. (2009). Power allocation in wireless multi-user relay networks. IEEE Transactions on Wireless Communications, 8(5), 2535–2545.

    Article  Google Scholar 

  6. Ngo, Hien Quoc, Larsson, Erik G., & Marzetta, Thomas L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.

    Article  Google Scholar 

  7. Parfait, Tebe., Kuang, Yujun., & Jerry, Kponyo. (2014). Performance analysis and comparison of ZF and MRT based downlink massive MIMO systems. In 2014 sixth international conference on ubiquitous and future networks (ICUFN), pages 383–388. IEEE.

  8. Zhang, Jiankang, Chen, Sheng, Maunder, Robert G., Zhang, Rong, & Hanzo, Lajos. (2018). Regularized zero-forcing precoding-aided adaptive coding and modulation for large-scale antenna array-based air-to-air communications. IEEE Journal on Selected Areas in Communications, 36(9), 2087–210.

    Article  Google Scholar 

  9. Fatema, Nusrat, Hua, Guang, Xiang, Yong, Peng, Dezhong, & Natgunanathan, Iynkaran. (2017). Massive MIMO linear precoding: A survey. IEEE Systems journal, 12(4), 3920–3931.

    Article  Google Scholar 

  10. Zheng, Kan, Zhao, Long, Mei, Jie, Shao, Bin, Xiang, Wei, & Hanzo, Lajos. (2015). Survey of large-scale MIMO systems. IEEE Communications Surveys & Tutorials, 17(3), 1738–1760.

    Article  Google Scholar 

  11. Dhakal, Sunil. (2019). High rate signal processing schemes for correlated channels in 5G networks.

  12. Björnson, Emil, Hoydis, Jakob, & Sanguinetti, Luca. (2017). Massive MIMO networks: Spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, 11(3–4), 154–655.

    Article  Google Scholar 

  13. Tse, David., & Viswanath, Pramod. (2005).Fundamentals of wireless communication. Cambridge university press.

  14. Wei, Yu. (2006). Uplink-downlink duality via minimax duality. IEEE Transactions on Information Theory, 52(2), 361–374.

    Article  MathSciNet  MATH  Google Scholar 

  15. Björnson, Emil., & Jorswieck, Eduard. (2013). Optimal resource allocation in coordinated multi-cell systems. Now Publishers Inc.

  16. Boccardi, Federico., Huang, Howard. (2006). Optimum power allocation for the MIMO-BC zero-forcing precoder with per-antenna power constraints. In 2006 40th Annual Conference on Information Sciences and Systems, pages 504–504. IEEE.

  17. Deng, Xitirnin, & Haimovich, Alexander M. (2005). Power allocation for cooperative relaying in wireless networks. IEEE Communications Letters, 9(11), 994–996.

    Article  Google Scholar 

  18. Host-Madsen, Anders, & Zhang, Junshan. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6), 2020–2040.

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, Yingbin, & Veeravalli, Venugopal V. (2005). Gaussian orthogonal relay channels: Optimal resource allocation and capacity. IEEE Transactions on Information Theory, 51(9), 3284–3289.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao, Yi., Adve, Raviraj., & Lim, Teng Joon. (2006). Improving amplify-and-forward relay networks: optimal power allocation versus selection. In 2006 ieee international symposium on information theory, pages 1234–1238. IEEE.

  21. Nguyen, Duy HN., & Nguyen, Ha. H. (2011). Power allocation in wireless multiuser multi-relay networks with distributed beamforming. IET Communications, 5(14), 2040–2051.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sanguinetti, Luca., Zappone, Alessio., & Debbah, Merouane. (2018). Deep learning power allocation in massive MIMO. In 2018 52nd Asilomar conference on signals, systems, and computers, pages 1257–1261. IEEE.

  23. Van Chien, Trinh, Björnson, Emil, & Larsson, Erik G. (2020). Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks. IEEE Transactions on Wireless Communications, 19(10), 6798–6812.

    Article  Google Scholar 

  24. Björnson, Emil, Jorswieck, Eduard, & Ottersten, Bjorn. (2010). Impact of spatial correlation and precoding design in OSTBC MIMO systems. IEEE Transactions on Wireless Communications, 9(11), 3578–3589.

    Article  Google Scholar 

  25. Sun, Liang, & McKay, Matthew R. (2010). Eigen-based transceivers for the MIMO broadcast channel with semi-orthogonal user selection. IEEE Transactions on Signal Processing, 58(10), 5246–5261.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hanzaz, Zakaria., Schotten, Hans Dieter. (2013). Analysis of effective SINR mapping models for MIMO OFDM in LTE system. pages 1509–1515.

  27. Mohajer, Amin. (2022). Mahya Sam Daliri, A Mirzaei, A Ziaeddini, M Nabipour, and Maryam Bavaghar. Heterogeneous computational resource allocation for noma: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing.

  28. Nikjoo, Faramarz, Mirzaei, Abbas, & Mohajer, Amin. (2018). A novel approach to efficient resource allocation in noma heterogeneous networks: Multi-criteria green resource management. Applied Artificial Intelligence, 32(7–8), 583–612.

    Article  Google Scholar 

  29. Amin Mohajer, F., Sorouri, A Mirzaei, Ziaeddini, A., Jalali Rad, K., & Bavaghar, Maryam. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 16(4), 5188–5199.

    Article  Google Scholar 

  30. Jaeckel, Stephan, Raschkowski, Leszek, Börner, Kai, & Thiele, Lars. (2014). QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Transactions on Antennas and Propagation, 62(6), 3242–3256.

    Article  Google Scholar 

  31. Aitken, Alexander C. (1936). IV.-On least squares and linear combination of observations. Proceedings of the Royal Society of Edinburgh, 55, 42–48.

    Article  MATH  Google Scholar 

  32. Zaidi, Ali., Athley, Fredrik., Medbo, Jonas., Gustavsson, Ulf., Durisi, Giuseppe., & Chen, Xiaoming. (2018). 5G Physical Layer: principles, models and technology components. Academic Press.

  33. Bobrov, Evgeny., Chinyaev, Boris., Kuznetsov, Viktor., Lu, Hao., Minenkov, Dmitrii., Troshin, Sergey., Yudakov, Daniil., & Zaev, Danila. (2021). Adaptive regularized zero-forcing beamforming in Massive MIMO with multi-antenna users. arXiv preprint arXiv:2107.00853.

  34. Mahmood, Nurul H., Berardinelli, Gilberto., Tavares, Fernando ML., Lauridsen, Mads., Mogensen, Preben., & Pajukoski, Kari. (2014). An efficient rank adaptation algorithm for cellular MIMO systems with IRC receivers. In 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE.

  35. Bobrov, Evgeny., Markov, Alexander., & Vetrov, Dmitry. (2021). Variational autoencoders for studying the manifold of precoding matrices with high spectral efficiency. arXiv preprint arXiv:2111.15626.

  36. Joham, Michael, Utschick, Wolfgang, & Nossek, Josef A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.

    Article  MathSciNet  MATH  Google Scholar 

  37. Nguyen, Duy HN., & Le-Ngoc, Tho. (2014). Mmse precoding for multiuser miso downlink transmission with non-homogeneous user snr conditions. EURASIP Journal on Advances in Signal Processing, 1–12, 2014.

    Google Scholar 

  38. Shi, Shuying, Schubert, Martin, & Boche, Holger. (2007). Downlink MMSE transceiver optimization for multiuser MIMO systems: Duality and sum-MSE minimization. IEEE Transactions on Signal Processing, 55(11), 5436–5446.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hesham Mehana, A., & Nosratinia, A. (2012). Diversity of MMSE MIMO receivers. IEEE Transactions on Information Theory, 58(11), 6788–6805.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wubben, Dirk., Bohnke, Ronald., Kuhn, Volker., & Kammeyer, K-D. (2004). Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice-reduction. In 2004 IEEE International Conference on Communications (IEEE Cat. No. 04CH37577), volume 2, pages 798–802. IEEE.

  41. Ren, Bin, Wang, Yingmin, Sun, Shaohui, Zhang, Yawen, Dai, Xiaoming, & Niu, Kai. (2017). Low-complexity MMSE-IRC algorithm for uplink massive MIMO systems. Electronics Letters, 53(14), 972–974.

    Article  Google Scholar 

  42. Wang, Bin, Chang, Yongyu, & Yang, Dacheng. (2014). On the SINR in massive MIMO networks with MMSE receivers. IEEE Communications Letters, 18(11), 1979–1982.

    Article  Google Scholar 

  43. Verdú, Sergio. (2002). Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 48(6), 1319–1343.

    Article  MathSciNet  MATH  Google Scholar 

  44. Björnson, Emil, Bengtsson, Mats, & Ottersten, Björn. (2014). Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [lecture notes]. IEEE Signal Processing Magazine, 31(4), 142–148.

    Article  Google Scholar 

  45. Lagen, Sandra., Wanuga, Kevin., Elkotby, Hussain., Goyal, Sanjay., Patriciello, Natale., & Giupponi, Lorenza. (2020). New radio physical layer abstraction for system-level simulations of 5G networks. In ICC 2020-2020 IEEE International Conference on Communications (ICC), pages 1–7. IEEE.

  46. Brueninghaus, Karsten., Astely, David., Salzer, Thomas., Visuri, Samuli., Alexiou, Angeliki., Karger, Stephan., Seraji, G-A. (2005). Link performance models for system level simulations of broadband radio access systems. In 2005 IEEE 16th international symposium on personal, indoor and mobile radio communications, volume 4, pages 2306–2311. IEEE.

  47. Francis, Jobin, & Mehta, Neelesh B. (2014). Eesm-based link adaptation in point-to-point and multi-cell ofdm systems: Modeling and analysis. IEEE Transactions on Wireless Communications, 13(1), 407–417.

    Article  Google Scholar 

  48. Bobrov, Evgeny., Kropotov, Dmitry., Troshin, Sergey., & Zaev, Danila. (2021). L-BFGS precoding optimization algorithm for massive MIMO systems with multi-antenna users.

  49. Bohagen, Frode., Orten, Pål., & Oien, GE. (2005). Construction and capacity analysis of high-rank line-of-sight MIMO channels. In IEEE Wireless Communications and Networking Conference, 2005, volume 1, pages 432–437. IEEE.

  50. Wei, Yu., Rhee, Wonjong, Boyd, Stephen, & Cioffi, John M. (2004). Iterative water-filling for gaussian vector multiple-access channels. IEEE Transactions on Information Theory, 50(1), 145–152.

    Article  MathSciNet  MATH  Google Scholar 

  51. Hoydis, Jakob., Cammerer, Sebastian., Aoudia, Fayçal Ait., Vem, Avinash., Binder, Nikolaus., Marcus, Guillermo., & Keller, Alexander. (2022). Sionna: An open-source library for next-generation physical layer research. arXiv preprint arXiv:2203.11854.

  52. Bobrov, Evgeny., Kropotov, Dmitry., & Lu, Hao. (2021). Massive MIMO adaptive modulation and coding using online deep learning algorithm. IEEE Communications Letters.

  53. TSG RAN; NR;. Physical layer procedures for data (release 16) v16.0.0. 3GPP TS 38.214, 2019.

Download references

Acknowledgements

Authors are grateful to Irina Basieva, Lu Hao, Dmitri Shmelkin and Yue Zongdi for discussions and support. Also authors appreciate valuable and constructive comments from unknown reviewers.

Funding

The research was supported by Huawei Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Bobrov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Search of MCS-\(\beta\) Effective SINR

The values of \(\beta\) for Modulation and Coding Scheme (MCS) [52] are taken from Table 4. There are different \(\beta\) values for different MCSes [45]. The Table 4 shows \(\beta\) values, which corresponds to Tables 5.1.3.1-1 to 5.1.3.1-2 in [53]. The MCS value depends on the radio quality and therefore on \(\text {SINR}^{eff}_\beta\).

Thus, \(\text {SINR}^{eff}_\beta\) can be found by simple iteration method on the equation (12), initializing \(\text {SINR}^{eff}_\beta\) by geometrical average using (33) and then taking \(\beta = \beta (\text {MCS})\) from Table 4 and \(\text {MCS} = \text {MCS}(\text {SINR}^{eff}_\beta )\) from Table 5.

Also note that low values of \(\text {SINR}^{eff}_\beta\) (up to -5 dB) indicate that the user is almost out of service, and high values of \(\text {SINR}^{eff}_\beta\) (after 23 dB) do not make much sense.

Table 4 Optimal \(\beta\) values for each MCS
Table 5 Optimal SE values for each MCS

1.2 Derivation of the eq. (47)

From the identity (45) \({\mathcal {L}}^{'}_{{p}_l}=0\):

$$\begin{aligned} x_l=(1-\beta _k\ln (X_k))X_k \beta _k\sigma ^2\Vert \varvec{g}_l\Vert ^2 \lambda _i\Vert {{\varvec{w}'}}_{l}\Vert ^2. \end{aligned}$$
(62)

Taking average of (62):

$$\begin{aligned} X_k= & {} \frac{1}{L_k}\sum \limits _{l \in {\mathcal {L}}_k}x_l \Leftrightarrow X_k=(1-\beta _k\ln (X_k))\nonumber \\{} & {} X_k \frac{1}{L_k}\sum \limits _{l \in {\mathcal {L}}_k}\left( \sigma ^2s_l^{-2} \lambda _i\Vert {{\varvec{w}'}}_{l}\Vert ^2 \right) . \end{aligned}$$
(63)

Dividing (62) by (63) we get:

$$\begin{aligned} \frac{x_l}{X_k}=\frac{\sigma ^2s_l^{-2} \lambda _i\Vert {{\varvec{w}'}}_{l}\Vert ^2}{ \frac{1}{L_k}\sum \limits _{v \in {\mathcal {L}}_k}\left( \sigma ^2s_v^{-2} \lambda _i\Vert {{\varvec{w}'}}_v\Vert ^2 \right) }=\frac{s_l^{-2} \Vert {{\varvec{w}'}}_{l}\Vert ^2}{ \frac{1}{L_k}\sum \limits _{v \in {\mathcal {L}}_k}\left( s_v^{-2} \Vert {{\varvec{w}'}}_v\Vert ^2 \right) }. \end{aligned}$$
(64)

From (63):

$$\begin{aligned} X_k=\exp \left( \frac{1}{\beta _k}-\frac{1}{\beta _k \frac{1}{L_k}\sum \limits _{l \in {\mathcal {L}}_k}\left( \sigma ^2s_l^{-2} \lambda _i\Vert {{\varvec{w}'}}_{l}\Vert ^2 \right) }\right) . \end{aligned}$$
(65)

From (64) and (65) we can derive:

$$\begin{aligned} x_l= & {} \frac{s_l^{-2} \Vert {{\varvec{w}'}}_{l}\Vert ^2}{ \frac{1}{L_k}\sum \limits _{v \in {\mathcal {L}}_k}\left( s_v^{-2} \Vert {{\varvec{w}'}}_v\Vert ^2 \right) }\nonumber \\{} & {} \quad \exp \left( \frac{1}{\beta _k}-\frac{1}{\beta _k \frac{1}{L_k}\sum \limits _{l \in {\mathcal {L}}_k}\left( \sigma ^2s_l^{-2} \lambda _i\Vert {{\varvec{w}'}}_{l}\Vert ^2 \right) }\right) . \end{aligned}$$
(66)

Also, we know that \(x_l=\exp \left( -\frac{{p}_l}{\beta _l\sigma ^2 s_l^{-2}}\right)\).

So we know \(p_l=-\beta _l\sigma ^2 s_l^{-2}\ln \left( x_l\right)\) and can substitute (66) in the \(p_l\) expression.

Taking into account \(\sum \limits _{l=1}^{L}(\Vert {{\varvec{w}'}}_{l}\Vert ^2{p}_l)=P\) we obtain:

$$\begin{aligned}{} & {} \sum \limits _{l=1}^{L}(\Vert {{\varvec{w}'}}_{l}\Vert ^2{p}_l)\nonumber \\{} & {} =-\sum \limits _{k=1}^{K}\sum \limits _{l \in {\mathcal {L}}_k}\left[ \sigma ^2s_l^{-2}\Vert {{\varvec{w}'}}_{l}\Vert ^2\left( 1-\frac{1}{ \frac{1}{L_{k}}\sum \limits _{v=1}^{L_{k}}\left( \sigma ^2s_v^{-2} \lambda _i\Vert {{\varvec{w}'}}_v\Vert ^2 \right) }\right) \right] -\nonumber \\{} & {} \quad - \sum \limits _{l=1}^{L}\beta _k\sigma ^2s_l^{-2}\Vert {{\varvec{w}'}}_{l}\Vert ^2\ln \left( \frac{s_l^{-2} \Vert {{\varvec{w}'}}_{l}\Vert ^2}{\frac{1}{L_{k}}\sum \limits _{v=1}^{L_{k}}s_v^{-2} \Vert {{\varvec{w}'}}_v\Vert ^2} \right) =\nonumber \\{} & {} =\lambda _i^{-1}L-\sum \limits _{l=1}^{L}\sigma ^2s_l^{-2}\Vert {{\varvec{w}'}}_{l}\Vert ^2\nonumber \\{} & {} \quad - \sum \limits _{l=1}^{L}\beta _k\sigma ^2s_l^{-2}\Vert {{\varvec{w}'}}_{l}\Vert ^2\ln \left( \frac{s_l^{-2} \Vert {{\varvec{w}'}}_{l}\Vert ^2}{\frac{1}{L_{k}}\sum \limits _{v=1}^{L_{k}}s_v^{-2} \Vert {{\varvec{w}'}}_v\Vert ^2} \right) =P, \end{aligned}$$
(67)
$$\begin{aligned} \lambda _i^{-1}= \frac{P}{L}+ \frac{1}{L}\sum \limits _{l=1}^{L}\sigma ^2s_l^{-2}\Vert {{\varvec{w}'}}_{l}\Vert ^2\left( \beta _k\ln \left( \frac{s_l^{-2} \Vert {{\varvec{w}'}}_{l}\Vert ^2}{\frac{1}{L_k}\sum \limits _{v \in {\mathcal {L}}_k}s_v^{-2} \Vert {{\varvec{w}'}}_v\Vert ^2} \right) +1\right) . \end{aligned}$$
(68)

Substituting (68) into (65) and (65) into (64) we get the required expressions for \(x_l\) and then for \(p_l\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrov, E., Chinyaev, B., Kuznetsov, V. et al. Power allocation algorithms for massive MIMO systems with multi-antenna users. Wireless Netw 29, 3747–3768 (2023). https://doi.org/10.1007/s11276-023-03442-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03442-1

Keywords

Navigation