Skip to main content

Advertisement

Log in

Secure SWIPT-powered UAV communication against full-duplex active eavesdropper

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

To further address the energy constraint problem and improve the secrecy performance of unmanned aerial vehicle (UAV) systems in the fifth generation (5G)-enabled Internet of Things, we consider a secure UAV system with simultaneous wireless information and power transfer in the presence of a full-duplex active eavesdropper, which eavesdrops on confidential information and transmits malicious jamming signals simultaneously. In particular, the UAV is powered by a constrained onboard battery that can harvest energy from the ambient radio frequency signals. The trajectory of the UAV, power splitting ratio, and transmitting power are jointly optimized to maximize the secrecy rate of the system. Owing to the non-convexity of the problem, we propose an alternative optimization algorithm by applying successive convex approximation and block coordinate descent methods. The simulation results show the proposed joint optimization algorithm can promote the average secrecy rate of the system as compared with other benchmark schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The contribution of our paper may be extended to multi-antenna cases, details will be taken as future work.

  2. Experiments in [30] show that the LoS channel model can describe the ground-air channel well.

References

  1. Shahzadi, R., Ali, M., Khan, H. Z., & Naeem, M. (2021). UAV assisted 5G and beyond wireless networks: A survey. Journal of Network and Computer Applications, 189, 103114.

    Article  Google Scholar 

  2. Li, B., Li, Q., Zeng, Y., Rong, Y., & Zhang, R. (2021). 3D trajectory optimization for energy-efficient UAV communication: A control design perspective. IEEE Transactions on Wireless Communications, 21(6), 4579–4593.

    Article  Google Scholar 

  3. Zhang, G., Wu, Q., Cui, M., & Zhang, R. (2019). Securing UAV communications via joint trajectory and power control. IEEE Transactions on Wireless Communications, 18(2), 1376–1389.

    Article  Google Scholar 

  4. Tran, D.-H., Nguyen, V.-D., Chatzinotas, S., Vu, T. X., & Ottersten, B. (2021). UAV relay-assisted emergency communications in IoT networks: Resource allocation and trajectory optimization. IEEE Transactions on Wireless Communications, 21(3), 1621–1637.

    Article  Google Scholar 

  5. Fan, X., Liu, D., Fu, B., & Wen, S. (2021). Optimal relay selection for UAV-assisted V2V communications. Wireless Networks, 27(5), 3233–3249.

    Article  Google Scholar 

  6. Ho-Van, K., & Do, T. (2021). Performance analysis of energy harvesting UAV selection. Wireless Communications and Mobile Computing, 2021, 1–13, 03.

    Google Scholar 

  7. Sharma, P. K., & Kim, D. I. (2020). Secure 3d mobile UAV relaying for hybrid satellite-terrestrial networks. IEEE Transactions on Wireless Communications, 19(4), 2770–2784.

    Article  Google Scholar 

  8. Du, H., Niyato, D., Xie, Y.-A., Cheng, Y., Kang, J., & Kim, D. I. (2022). Performance analysis and optimization for jammer-aided multiantenna UAV covert communication. IEEE Journal on Selected Areas in Communications, 40(10), 2962–2979.

    Article  Google Scholar 

  9. Li, A., Wu, Q., & Zhang, R. (2019). UAV-enabled cooperative jamming for improving secrecy of ground wiretap channel. IEEE Wireless Communications Letters, 8(1), 181–184.

    Article  Google Scholar 

  10. Jia, Z., Sheng, M., Li, J., Niyato, D., & Han, Z. (2021). Leo-satellite-assisted UAV: Joint trajectory and data collection for internet of remote things in 6G aerial access networks. IEEE Internet of Things Journal, 8(12), 9814–9826.

    Article  Google Scholar 

  11. Al-Hilo, A., Samir, M., Elhattab, M., Assi, C., & Sharafeddine, S. (2022). RIS-assisted UAV for timely data collection in IoT networks. IEEE Systems Journal.

  12. Nan, Y., Wang, L., Geraci, G., Elkashlan, M., & Renzo, M. (2015). Safeguarding 5G wireless communication networks using physical layer security. Communications Magazine IEEE, 53(4), 20–27.

    Article  Google Scholar 

  13. Cao, K., Wang, B., Ding, H., Lv, L., Dong, R., Cheng, T., & Gong, F. (2021). Improving physical layer security of uplink NOMA via energy harvesting jammers. IEEE Transactions on Information Forensics and Security, 16, 786–799.

    Article  Google Scholar 

  14. Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, Q., Mei, W., & Zhang, R. (2019). Safeguarding wireless network with UAVs: A physical layer security perspective. IEEE Wireless Communications, 26(5), 12–18.

    Article  Google Scholar 

  16. Gao, Y., Wu, Y., Cui, Z., Chen, H., & Yang, W. (2021). Robust design for turning and climbing angle-constrained uav communication under malicious jamming. IEEE Communications Letters, 25(2), 584–588.

    Article  Google Scholar 

  17. Li, Y., Wang, W., Liu, M., Zhao, N., Jiang, X., Chen, Y., & Wang, X. (2022). Joint trajectory and power optimization for jamming-aided noma-uav secure networks. IEEE Systems Journal.

  18. Dong, R., Wang, B., Cao, K., & Cheng, T. (2021). Securing transmission for UAV swarm-enabled communication network. IEEE Systems Journal, 1–12.

  19. Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.

    Article  Google Scholar 

  20. Tran, H. Q. (2022). Two energy harvesting protocols for swipt at UAVs in cooperative relaying networks of iot systems. Wireless Personal Communications, 1–22.

  21. Peng, H., Wang, L.-C., Li, G. Y., & Tsai, A.-H. (2022). Long-lasting UAV-aided RIS communications based on SWIPT. In IEEE wireless communications and networking conference (WCNC) (pp. 1844–1849). IEEE.

  22. Özyurt, S., Coşkun, A., Büyükçorak, S., Kurt, G. K., & Kucur, O. (2022). A survey on multiuser SWIPT communications for 5G+. IEEE Access, 10, 109814–109849.

    Article  Google Scholar 

  23. Wang, W., Li, X., Zhang, M., Cumanan, K., Ng, D. W. K., Zhang, G., Tang, J., & Dobre, O. A. (2020). Energy-constrained UAV-assisted secure communications with position optimization and cooperative jamming. IEEE Transactions on Communications, 68(7), 4476–4489.

    Article  Google Scholar 

  24. Wang, J., Zhang, J., Han, M., & Pan, G. (2022). Secrecy outage analysis for UAV assisted satellite-terrestrial swipt systems with NOMA. Digital Signal Processing, 123, 103453.

    Article  Google Scholar 

  25. Duo, B., Luo, J., Li, Y., Hu, H., & Wang, Z. (2021). Joint trajectory and power optimization for securing UAV communications against active eavesdropping. China Communications, 18(1), 88–99.

    Article  Google Scholar 

  26. Yin, S., Zhao, Y., Li, L., & Yu, F. R. (2019). UAV-assisted cooperative communications with power-splitting information and power transfer. IEEE Transactions on Green Communications and Networking, 3(4), 1044–1057.

    Article  Google Scholar 

  27. Wang, W., Li, X., Zhang, M., Cumanan, K., Kwan Ng, D. W., Zhang, G., Tang, J., & Dobre, O. A. (2020). Energy-constrained UAV-assisted secure communications with position optimization and cooperative jamming. IEEE Transactions on Communications, 68(7), 4476–4489.

    Article  Google Scholar 

  28. Yin, S., Zhao, Y., & Li, L. (2018). UAV-assisted cooperative communications with time-sharing swipt. In IEEE international conference on communications (ICC),2018 (pp. 1–6).

  29. Wu, Q., Zeng, Y., & Zhang, R. (2018). Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Transactions on Wireless Communications, 17(3), 2109–2121.

    Article  Google Scholar 

  30. Lin, X., Yajnanarayana, V., Muruganathan, S. D., Gao, S., Asplund, H., Maattanen, H.-L., Bergstrom, M., Euler, S., & Wang, Y.-P.E. (2018). The sky is not the limit: LTE for unmanned aerial vehicles. IEEE Communications Magazine, 56(4), 204–210.

    Article  Google Scholar 

  31. Liu, C., Lee, J., & Quek, T. Q. S. (2019). Safeguarding UAV communications against full-duplex active eavesdropper. IEEE Transactions on Wireless Communications, 18(6), 2919–2931.

    Article  Google Scholar 

  32. Kang, H., Chang, X., Mišić, J., Mišić, V. B., Fan, J., & Bai, J. (2022). Improving dual-uav aided ground-uav Bi-directional communication security: Joint uav trajectory and transmit power optimization. IEEE Transactions on Vehicular Technology, 71(10), 10570–10583.

    Article  Google Scholar 

  33. Grant, M., & Boyd, S. (2014). CVX: Matlab software for disciplined convex programming. version 2.1. http://cvxr.com/cvx, Mar.

  34. Wang, K.-Y., So, A.M.-C., Chang, T.-H., Ma, W.-K., & Chi, C.-Y. (2014). Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization. IEEE Transactions on Signal Processing, 62(21), 5690–5705.

    Article  MathSciNet  MATH  Google Scholar 

  35. Fang, S., Chen, G., & Li, Y. (2021). Joint optimization for secure intelligent reflecting surface assisted UAV networks. IEEE Wireless Communications Letters, 10(2), 276–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buhong Wang or Kunrui Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grant 62101560, 61671465 and 61902426, in part by the Natural Science Basic Research Program of Shaanxi under Grant 2022JQ-619, in part by the open research fund of the State Key Laboratory of ISN under Grant ISN23-04, in part by China Postdoctoral Science Foundation under Grant 2021M692502, and in part by the National University of Defense Technology Research Fund under Grant ZK21-44.

Appendix 1: Proof of the Theorem 1

Appendix 1: Proof of the Theorem 1

It is obvious to find that if \(a_n \le b\), the information sent to U is eavesdropped by E. In this case, optimal transmitting power \(P_s[n]=0\). For the case of \(a_n > b\), we can see that the objective function (9a) is concave with respect to \(P_s\). The Lagrangian of Problem (9) can be given as follows

$$\begin{aligned} \begin{aligned} L(P_s[n],\lambda _1,\lambda _2)=&\sum _{n=1}^{N}\left( \log _2(1+a_nP_s[n])-\log _2(1+bP_s[n])\right) \\&+\lambda _1\left( \frac{1}{N}\sum _{n=1}^Nc_nP_s[n]-\phi ^{EH}+d_n\right) \\&+\lambda _2\left( P_{\text {mean}}-\frac{1}{N}\sum _{n=1}^{N}P_s[n]\right) ,\\ \end{aligned} \end{aligned}$$
(22)

where \(\lambda _1, \lambda _2 \ge 0\). Thus, the Lagrangian dual function of Problem (9) be reexpressed as

$$\begin{aligned} \begin{aligned} g(\lambda _1,\lambda _2)= \mathop {\max }_{0 \le P_s[n] \le P_{\max }}L(P_s[n],\lambda _1,\lambda _2), \end{aligned} \end{aligned}$$
(23)

It can be concluded that solving Problem (9) is equivalent to its dual problem, which is expressed as

$$\begin{aligned} \begin{aligned} \mathop {\min }_{\lambda _1,\lambda _2}g(\lambda _1,\lambda _2). \end{aligned} \end{aligned}$$
(24)

Note that the dual problem can be divided into N subproblems, as follows

$$\begin{aligned} \begin{aligned}&L(P_s[n],\lambda _1,\lambda _2)\\&=\sum _{n=1}^{N}L_n(P_s[n],\lambda _1,\lambda _2)-\lambda _1(\phi ^{EH}-d_n)+\lambda _2P_{\text {mean}}, \end{aligned} \end{aligned}$$
(25)

where

$$\begin{aligned} \begin{aligned} L_n(P_s[n],\lambda _1,\lambda _2)=&\log _2(1+a_nP_s[n])-\log _2(1+bP_s[n])\\&+\frac{\lambda _1c_n}{N}P_s[n]-\frac{\lambda _2}{N}P_s[n]. \end{aligned} \end{aligned}$$
(26)

As such, the derivation of the Lagrangian of Problem (9) can be obtained as

$$\begin{aligned} \begin{aligned} \frac{\partial L(P_s[n],\lambda _1,\lambda _2)}{\partial P_s[n]}=&\frac{a_n}{\ln 2(1+a_nP_s[n])}-\frac{b}{\ln 2(1+bP_s[n])}\\&+\frac{\lambda _1c_n}{N}-\frac{\lambda _2}{N}. \end{aligned} \end{aligned}$$
(27)

By setting the derivative to 0, we can obtain the optimal transmitted power \(\hat{P}_s[n]\). The proof is completed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, D., Wang, B. & Cao, K. Secure SWIPT-powered UAV communication against full-duplex active eavesdropper. Wireless Netw 29, 2495–2504 (2023). https://doi.org/10.1007/s11276-023-03318-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03318-4

Keywords

Navigation