Skip to main content
Log in

Range free localization in WSN against wormhole attack using Farkas’ Lemma

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2023

This article has been updated

Abstract

The ongoing ubiquitous computing era with the internet of things (IoT) and wireless sensor networks (WSN) is desperate to realize near-to-truth information by collecting and processing every significant data. It needs precise localization of unknown sensors that are communicating field-sensed data. The significance of location attracts security threats also, like wormhole attacks (WA). The WA compromises network security more simply; however it ruins the localization terribly. Most of the existing WA-combat localization algorithms instead of finding nodes by defining infeasibility, try to identify inappropriate nodes with too narrowly defined parameters to apply to the global visibility of network states. Therefore, the infeasibility defined by Farkas’ lemma is implemented in the proposed algorithm i.e. secure localization algorithm using Farkas’ lemma (SLAF). SLAF has two steps: WA detection and elimination (WDE), and localization of unknown node (LoU). In WDE, it detects nodes that are inconsistent in terms of distance equations defined between sensor pairs. Subsequently, in LoU, distance is approximated as suggested by DV-Hop. However, distance values are further improved by defining elastic variables. Finally, these distance values are passed to linear optimization for localization. The simulation validates SLAF as consistent, reliable, scalable, and precise in comparison with other recent time contenders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Change history

References

  1. Zhang, N. (2022). Moore’s Law is dead, long live Moore’s Law!https://doi.org/10.48550/arxiv.2205.15011.

  2. Almurisi, N., & Tadisetty, S. (2022). Cloud-based virtualization environment for IoT-based WSN: Solutions, approaches and challenges. Journal of Ambient Intelligence and Humanized Computing, 1, 1–23. https://doi.org/10.1007/S12652-021-03515-Z/TABLES/5

    Article  Google Scholar 

  3. Fascista, A. (2022). Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors, 22(5), 1824. https://doi.org/10.3390/S22051824

    Article  Google Scholar 

  4. Xiao, Z., & Zeng, Y. (2021). An overview on integrated localization and communication towards 6G. Sci. China Inf. Sci., 65(3), 1–46. https://doi.org/10.1007/S11432-020-3218-8

    Article  MathSciNet  Google Scholar 

  5. Niculescu, B., & Nath, D. (2001). Ad-Hoc positioning systems. https://doi.org/10.1109/GLOCOM.2001.965964.

  6. Kumar, S., Kumar, S., & Batra, N. (2021). Optimized distance range free localization algorithm for WSN. Wireless Personal Communications, 117(3), 1879–1907. https://doi.org/10.1007/s11277-020-07950-7

    Article  Google Scholar 

  7. Kumar, S., Batra, N., & Kumar, S. (2021). Range-independent localization for GPS dead zone in MWSN. Wirel. Networks, 27(7), 4807–4823. https://doi.org/10.1007/s11276-021-02773-1

    Article  Google Scholar 

  8. Kumar, S., Kumar, S., & Lobiyal, D. K. (2022). MWLP-DP: Mobile war-fighters location prediction for dark phase in Internet of Battlefield Things. Transactions on Emerging Telecommunications Technologies, 33(4), 1–19. https://doi.org/10.1002/ett.4397

    Article  Google Scholar 

  9. Sujihelen, L., & Jayakumar, C. (2018). Inclusive elliptical curve cryptography (IECC) for wireless sensor network efficient operations. Wireless Personal Communications, 99(2), 893–914. https://doi.org/10.1007/S11277-017-5157-4

    Article  Google Scholar 

  10. Li, J., & Wang, D. (2019). The security DV-Hop algorithm against multiple-wormhole-node-link in WSN. KSII Transactions on Internet and Information Systems, 13(4), 2223–2242. https://doi.org/10.3837/TIIS.2019.04.027

    Article  Google Scholar 

  11. Yadav, K., Jain, A., Osman Sid Ahmed, N. M., Saad-Hamad, S. A., Dhiman, G., & Alotaibi, S. D. (2022). Internet of thing based koch fractal curve fractal antennas for wireless applications. IETE Journal of Research. https://doi.org/10.1080/03772063.2022.2058631

    Article  Google Scholar 

  12. Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy preserving secure measure against wormhole attack in wireless sensor networks. IEEE Access, 7, 84132–84141. https://doi.org/10.1109/ACCESS.2019.2924283

    Article  Google Scholar 

  13. Dutta, N., & Singh, M. M. (2019). Wormhole attack in wireless sensor networks: A critical review. Advances in Intelligent Systems and Computing, 702, 147–161. https://doi.org/10.1007/978-981-13-0680-8_14/COVER/

    Article  Google Scholar 

  14. Lenzen, C., Locher, T., Sommer, P., & Wattenhofer, R. (2010). Clock synchronization: open problems in theory and practice. In: Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol. 5901 LNCS, pp. 61–70. https://doi.org/10.1007/978-3-642-11266-9_5/COVER.

  15. Teng, Z., Du, C., Li, M., Zhang, H., & Zhu, W. (2022). A wormhole attack detection algorithm integrated with the node trust optimization model in WSNs. IEEE Sensors Journal, 22(7), 7361–7370. https://doi.org/10.1109/JSEN.2022.3152841

    Article  Google Scholar 

  16. Han, D., et al. (2022). A novel secure DV-Hop localization algorithm against wormhole attacks. Telecommunication Systems, 80(3), 413–430. https://doi.org/10.1007/S11235-022-00914-1

    Article  Google Scholar 

  17. Maier, K., Helwig, A., & Müller, G. (2017). Room-temperature dosimeter-type gas sensors with periodic reset. Sensors Actuators B Chem., 244, 701–708. https://doi.org/10.1016/J.SNB.2016.12.119

    Article  Google Scholar 

  18. Wang, M., Jin, W., Liu, X., Sun, W., Zhang, C., & Bi, W. (2022). Design and research of magnetic field sensor based on grapefruit optical fiber filled with magnetic fluid. Optoelectronics Letters, 18(5), 269–275. https://doi.org/10.1007/S11801-022-1135-5

    Article  Google Scholar 

  19. Lin, S., et al. (2022). An ultralight, flexible, and biocompatible all-fiber motion sensor for artificial intelligence wearable electronics. NPJ Flex Electro., 6(1), 1–8. https://doi.org/10.1038/s41528-022-00158-8

    Article  Google Scholar 

  20. Thomson, C., Wadhaj, I., Tan, Z., & Al-Dubai, A. (2021). A mobility aware duty cycling and preambling solution for wireless sensor network with mobile sink node. Wirel. Networks, 27(5), 3423–3439. https://doi.org/10.1007/S11276-021-02580-8/FIGURES/17

    Article  Google Scholar 

  21. Singh, S., & Singh, H. (2022). Intelligent Ad–Hoc–On demand multipath distance vector for wormhole attack in clustered WSN. Wireless Personal Communications, 122(1), 1305–1327. https://doi.org/10.1007/s11277-021-08950-x

    Article  MathSciNet  Google Scholar 

  22. Shahid, H., Ashraf, H., Javed, H., Humayun, M., Jhanjhi, N., & AlZain, M. A. (2021). Energy optimised security against wormhole attack in IoT-based wireless sensor networks. Comput. Mater. Contin., 68(2), 1967. https://doi.org/10.32604/CMC.2021.015259

    Article  Google Scholar 

  23. Dani, V., Bhonde, R., & Mandloi, A. (2022). “iWAD: An improved wormhole attack detection system for wireless sensor network. Lecture Notes in Networks and Systems, 418, 1002–1012. https://doi.org/10.1007/978-3-030-96308-8_93/COVER/

    Article  Google Scholar 

  24. Sun, Y., & Chen, Y. (2022). Detection of wormhole attacks in wireless sensor networks based on anomaly detection algorithms. In: 2022 2nd international conference on consumer electronics and computer engineering (ICCECE), pp. 777–782, 2022, https://doi.org/10.1109/ICCECE54139.2022.9712659

  25. Bhosale, S. A., & Sonavane, S. S. (2022). Wormhole attack detection system for IoT network: A hybrid approach. Wireless Personal Communications, 124(2), 1081–1108. https://doi.org/10.1007/s11277-021-09395-y

    Article  Google Scholar 

  26. Kaur, A., Gupta, G. P., & Mittal, S. (2021). Comparative study of the different variants of the DV—hop based node localization algorithms for wireless sensor, Vol. 123, no. 0123456789. Springer, 2021. https://doi.org/10.1007/s11277-021-09206-4

  27. Liouane, H., Messous, S., Cheikhrouhou, O., Baz, M., & Hamam, H. (2021). Regularized least square multi-hops localization algorithm for wireless sensor networks. IEEE Access, 9, 136406–136418. https://doi.org/10.1109/ACCESS.2021.3116767

    Article  Google Scholar 

  28. Kumar, S., Batra, N., & Kumar, S. (2022) Range-free localization by optimization in anisotropic WSN, pp. 157–168, 2022, https://doi.org/10.1007/978-981-16-5747-4_14.

  29. Kumar, S., Kumar, S., & Garg, R. (2022). Range–free localization for GWSN using k-NN algorithm with local linear Gaussian kernel regression ( KGR ). Evolving Systems. https://doi.org/10.1007/s12530-022-09436-2

    Article  Google Scholar 

  30. Farkas, J. (1902). Theorie der Einfachen Ungleichungen. J. für die reine und Angew Math., 479, 1–27. https://doi.org/10.1515/crll.1902.124.1

    Article  MathSciNet  MATH  Google Scholar 

  31. Kouvelas, N., Prasad, R. V., Yazdani, N., & Lucani, D. E. (2021). Np-CECADA: Enhancing ubiquitous connectivity of LoRa networks. In: Proceedings of 2021 IEEE 18th international conference mobile ad hoc smart system MASS 2021, pp. 374–382. https://doi.org/10.1109/MASS52906.2021.00054.

  32. Coppersmith, D., & Winograd, S. (1990). Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3), 251–280. https://doi.org/10.1016/S0747-7171(08)80013-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In: Proceedings of the annual ACM symposium on Theory Computer, pp. 302–311. https://doi.org/10.1145/800057.808695.

  34. Kumar, G., Rai, M. K., & Saha, R. (2017). Securing range free localization against wormhole attack using distance estimation and maximum likelihood estimation in Wireless Sensor Networks. Journal of Network and Computer Applications, 99, 10–16. https://doi.org/10.1016/J.JNCA.2017.10.006

    Article  Google Scholar 

  35. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126. https://doi.org/10.1145/359340.359342

    Article  MathSciNet  MATH  Google Scholar 

  36. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. ACM SIGOPS Operating Systems Review, 34(5), 93–104. https://doi.org/10.1145/384264.379006

    Article  Google Scholar 

  37. Kaushik, A., Lobiyal, D. K., & Kumar, S. (2021). Improved 3-dimensional DV-hop localization algorithm based on information of nearby nodes. Wirel. Networks, 27(3), 1801–1819. https://doi.org/10.1007/S11276-020-02533-7

    Article  Google Scholar 

  38. Shen, S., Yang, B., Qian, K., She, Y., & Wang, W. (2019). On improved DV-hop localization algorithm for accurate node localization in wireless sensor networks. Chinese Journal of Electronics, 28(3), 658–666. https://doi.org/10.1049/cje.2019.03.013

    Article  Google Scholar 

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation of author Tarun Gulati error has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, R., Gulati, T. & Kumar, S. Range free localization in WSN against wormhole attack using Farkas’ Lemma. Wireless Netw 29, 2029–2043 (2023). https://doi.org/10.1007/s11276-023-03279-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03279-8

Keywords

Navigation