Skip to main content
Log in

On the outage performance of decode-and-forward based relay ordering in cognitive wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, the issue of secondary network access in cognitive wireless sensor networks is investigated. An efficient scheme (in terms of both power and spectrum) named decode-and-forward based multi-relay scheme with relay ordering (DF-MRRO) is proposed for secondary network access. More important, this scheme is used to enhance the performance of secondary network. In an effort to assess the performance, the received signal-to interference-plus-noise ratio of both the primary and secondary links are derived, from which new exact closed-form expressions for the outage probability of primary and secondary networks are derived. Moreover, the diversity order is calculated for both the primary and secondary network. It is also shown that full diversity order can be achieved if the condition of power requirement is satisfied. Finally, simulation results obtained for the outage performance of the proposed scheme in primary and secondary networks prove the effectiveness of the proposed scheme. It also demonstrates that a maximum of 7 dB SNR gain can be achieved in the proposed DF-MRRO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated.

References

  1. Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.

    Article  Google Scholar 

  2. Jaafar, W., Ajib, W., & Haccoun, D. (2013). Adaptive relaying scheme for cognitive radio networks. IET Communications, 7(11), 1151–1162.

    Article  Google Scholar 

  3. Liang, Y.-C., Chen, K.-C., Li, G. Y., & Mähönen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  4. Weiss, T., & Jondral, F. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), S8–S14.

    Article  Google Scholar 

  5. Vijay, G., Bdira, E. B. A., & Ibnkahla, M. (2011). Cognition in wireless sensor networks: A perspective. IEEE Sensors Journal, 11(3), 582–592.

    Article  Google Scholar 

  6. Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive radio wireless sensor networks: Applications, challenges and research trends. Sensors Journal, 13, 11196–21128.

    Article  Google Scholar 

  7. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Networks, 23(4), 34–40.

    Article  Google Scholar 

  8. Bicen, A. O., Gungor, V. C., & Akan, O. B. (2012). Delay-sensitive and multimedia communication in cognitive radio sensor networks. Ad Hoc Networks, 10(5), 816–830.

    Article  Google Scholar 

  9. Laneman, J., Tse, D., & Wornell, G. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  10. Jaafar, W., Ajib, W., & Haccoun, D. (2014). On the performance of multi-hop wireless relay networks. Wireless Communications and Mobile Computing, 14(1), 145–160.

    Article  Google Scholar 

  11. Wang, C.-L., Cho, T.-N., & Yang, K.-J. (2013). On power allocation and relay selection for a two-way amplify-and-forward relaying system. IEEE Transactions on Communications, 61(8), 3146–3155.

    Article  Google Scholar 

  12. Hong, J., Hong, B., Ban, T.-W., & Choi, W. (2012). On the cooperative diversity gain in underlay cognitive radio systems. IEEE Transactions on Communications, 60(1), 209–219.

    Article  Google Scholar 

  13. Salameh, O. I., Turck, K. D., Bruneel, H., Blondia, C., & Wittevrongel, S. (2014). On the performance of secondary users in a cognitive radio network. International Conference on Analytical and Stochastic Modelling Techniques and Applications, 8499, 2018–2222.

    Google Scholar 

  14. Zou, Y., Yao, Y. D., & Zheng, B. (2012). Cooperative relay techniques for cognitive radio systems: Spectrum sensing and secondary user transmissions. IEEE Communications Magazine, 50(4), 98–103.

    Article  Google Scholar 

  15. Tellambura, C., & Kusaladharma, S. (2017). An overview of cognitive radio networks. In Wiley encyclopedia of electrical and electronics engineering.

  16. Yi, Z., & Kim, I.-M. (2009). Relay ordering in a multi-hop cooperative diversity network. IEEE Transactions on Communications, 57, 2590–2596.

    Article  Google Scholar 

  17. Fang, H., Lin, X., & Lok, T. M. (2012). Power allocation for multiuser cooperative communication networks under relay-selection degree bounds. IEEE Transactions on Vehicular Technology, 61(7), 2991–3001.

    Article  Google Scholar 

  18. Nguyen, H. X., Nguyen, H. H., & Le-Ngoc, T. (2010). Diversity analysis of relay selection schemes for two-way wireless relay networks. Wireless Personal Communications, 59(2), 173–189. https://doi.org/10.1007/s11277-009-9911-0

    Article  Google Scholar 

  19. Bassily, R., & Ulukus, S. (2013). Deaf cooperation and relay selection strategies for secure communication in multiple relay networks. IEEE Transactions on Signal Processing, 61(6), 1544–1554.

    Article  MathSciNet  Google Scholar 

  20. Atapattu, S., Jjing, Y., Jiangand, H., & Tellambura, C. (2013). Relay selection schemes and performance analysis for two-way relay networks. IEEE Transactions on Communications, 61(3), 987–998.

    Article  Google Scholar 

  21. Krikidis, I., Charalambous, T., & Thompson, J. S. (2012). Buffer-aided relay selection for cooperative diversity systems without delay constraints. IEEE Transations on Wireless Communications, 11(5), 1957–1967.

    Article  Google Scholar 

  22. Ju, M., Kim, I. M., & Kim, D. I. (2012). Joint relay selection and relay ordering for DF-based cooperative relay networks. IEEE Transactions on Communications, 60(4), 908–915.

    Article  Google Scholar 

  23. Duy, T. T., & Kong, H. Y. (2012). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications. https://doi.org/10.1007/s11277-012-0616-4

    Article  Google Scholar 

  24. Son, P. N., & Kong, H. Y. (2014). Performance analysis of decode-and-forward scheme with relay ordering for secondary spectrum access. Wireless Personal Communications. https://doi.org/10.1007/s11277-014-1842-8

    Article  Google Scholar 

  25. Jaafar, W., Ajib, W., & Haccoun, D. (2014). A Cooperative transmission scheme for improving the secondary access in cognitive radio networks. IEEE Transactions on Wireless Communications, 13(11), 6219–6231.

    Article  Google Scholar 

  26. Wang, H., Yao, Y. D., & Peng, S. (2018). Prioritized secondary user access control in cognitive radio networks. IEEE Access, 6, 11007–11016. https://doi.org/10.1109/ACCESS.2018.2811341

    Article  Google Scholar 

  27. Yang, Y., Dai, L., Li, J., Mumtaz, S., & Rodriguez, J. (2017). Optimal spectrum access and power control of secondary users in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-017-0876-5

    Article  Google Scholar 

  28. El-Toukhey, A. T., Ammar, A. A., Tantawy, M. M., & Tarrad, I. F. (2017). Performance analysis of different opportunistic access based on secondary users priority using licensed channels in cognitive radio networks. In 34th National radio science conference (NRSC) (pp. 160–169). https://doi.org/10.1109/nrsc.2017.7893500

  29. Arzykulov, S., Nauryzbayev, G., Tsiftsis, T. A., Maham, B., & Abdallah, M. (2019). On the outage of underlay CR-NOMA networks with detect-and-forward relaying. IEEE Transactions on Cognitive Communications and Networking, 5(3), 795–804. https://doi.org/10.1109/tccn.2019.2916561

    Article  Google Scholar 

  30. Aulakh, I. K., & Vig, R. (2014). Optimization of secondary user access in cognitive radio networks. In Recent advances in engineering and computational sciences (RAECS) (pp. 1–6). https://doi.org/10.1109/RAECS.2014.6799511

  31. Liu, X., Sun, Q., Lu, W., Wu, C., & Ding, H. (2020). Big-data-based intelligent spectrum sensing for heterogeneous spectrum communications in 5G. IEEE Wireless Communications, 27(5), 67–73. https://doi.org/10.1109/MWC.001.1900493

    Article  Google Scholar 

  32. Liu, X., Sun, C., Zhou, M., Wu, C., Peng, B., & Li, P. (2021). Reinforcement learning-based multislot double-threshold spectrum sensing with Bayesian fusion for industrial big spectrum data. IEEE Transactions on Industrial Informatics, 17(5), 3391–3400. https://doi.org/10.1109/TII.2020.2987421

    Article  Google Scholar 

  33. Liu, X., & Zhang, X. (2020). NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Transactions on Industrial Informatics, 16(8), 5379–5388. https://doi.org/10.1109/TII.2019.2947435

    Article  Google Scholar 

  34. Hassen, T. W. (2012). Synchronization in cognitive overlay systems, 1st ed. M.S. thesis, Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.

  35. He, S., Jiang, L., He, C. (2012). A novel secondary user assisted relay mechanism in cognitive radio networks with multiple primary users. In Proceedings of IEEE GLOBECOM (pp. 1254–1259).

  36. Masri, A., Dama, Y. A. S., Mousa, A., & Hasan, F. (2015). Distributed synchronization protocol for secondary overlay access in cognitive radio networks. Internet Technologies and Applications. https://doi.org/10.1109/ITechA.2015.7317445

    Article  Google Scholar 

  37. Yiang, Q., Zhang, X., Qian, J., & Ye, Q. (2018). An anomaly node detection method for distributed time synchronization algorithm in cognitive radio sensor networks. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147718774467

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SD has designed the given model and computational framework and analyzed the data. She carried out the implementation part and contributed for the interpretation of the results. JMLM has provided feedback and helped to shape the manuscript. XA helped to analyze the throughput of the proposed system.

Corresponding author

Correspondence to S. Devipriya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

At high SNR, Eq. (28) can be approximated as

$$P\left( {C_{j} } \right) = 1$$
(37)
$$P\left( {D_{j} } \right) = \left\{ {\begin{array}{*{20}l} {\varsigma_{1,C} \left( {\overline{\gamma }} \right)^{ - (N - n)} ,} \hfill & {m \le y + 1} \hfill \\ {\varsigma_{2,C} \left( {\overline{\gamma }} \right)^{ - (N - n)(m - x)} ,} \hfill & {m > y + 1} \hfill \\ \end{array} } \right.$$
(38)
$$P_{PR}^{out} = \varsigma_{3,C} \left( {\overline{\gamma }} \right)^{{ - \left( {n - y + 1} \right)}}$$
(39)

where

$$\begin{aligned} \varsigma_{1,C} & = \mathop \prod \limits_{b = 1}^{N - n} \lambda_{{PT_{O} ,ST_{qb} }} \gamma_{k} \\ \varsigma_{2,C} & = \mathop \prod \limits_{b = 1}^{N - n} \lambda_{{PT_{O} ,ST_{qb} }} \gamma_{k} \mathop \prod \limits_{g = y + 1}^{m - 1} \frac{{\lambda_{{PT_{O} ,ST_{qb} }} \gamma_{k} }}{{\alpha_{{P_{g} }} - \left( {1 - \alpha_{{P_{g} }} } \right)\gamma_{k} }} \\ \varsigma_{3,C} & = \lambda_{{PT_{O} ,PR}} \gamma_{k} \mathop \prod \limits_{g = y + 1}^{N - n} \frac{{\lambda_{{PT_{O} ,PR}} \gamma_{k} }}{{\alpha_{{P_{g} }} - \left( {1 - \alpha_{{P_{g} }} } \right)\gamma_{k} }} \\ \end{aligned}$$

The outage probability of primary link for each possible set of C can be approximated as

$$P\left( C \right)P\left( D \right)P_{out}^{{PR_{o} }} = \left\{ {\begin{array}{*{20}l} {\varsigma_{1,C} \varsigma_{3,C} \left( {\overline{\gamma }} \right)^{{ - \left( {N - y + 1} \right)}} ,} \hfill & {m \le y + 1} \hfill \\ {\varsigma_{1,C} \varsigma_{3,C} \left( {\overline{\gamma }} \right)^{{ - \left( {N - n} \right)\left( {m - y} \right)\left( {n - y + 1} \right)}} ,} \hfill & {m > y + 1} \hfill \\ \end{array} } \right.$$

If all secondary transmitters can decode successfully i.e.\(C = \left\{ {ST_{1} ,ST_{2} , \ldots ,ST_{N} } \right\}\) and \(D = \left\{ \emptyset \right\}\), the outage probability can be written as

$$P\left( C \right)P\left( D \right)P_{out}^{{PR_{o} }} = \left[ {1 - exp\left( { - \lambda_{{PT_{O} ,PR}} R} \right)\mathop \prod \limits_{j = 1}^{N} - exp\left( { - \lambda_{{ST_{j} ,PR}} R} \right)} \right]$$

At high SNR, the above equation can be approximated as

$$P\left( C \right)P\left( D \right)P_{out}^{{PR_{o} }} = \varsigma_{4,C} \left( {\overline{\gamma }} \right)^{{ - \left( {N - x + 1} \right)}}$$
(40)

where

$$\varsigma_{4,C} = \lambda_{{PT_{O} ,PR}} \gamma_{k} \mathop \prod \limits_{j = x + 1}^{N} \lambda_{{ST_{j} ,PR}} \gamma_{k}$$

Moreover, we have

$$\left( {N - n} \right)\left( {m - y} \right) + n - y + 1 \ge N - x + 1$$

Hence, outage probability at high SNR can be given as

$$P_{primary}^{out} = \mathop \sum \limits_{D} P\left( {C_{j} } \right)P\left( {D_{j} } \right)P_{out}^{PR} = \varsigma \left( {\overline{\gamma }} \right)^{ - (N - x + 1)}$$
(41)

The diversity order is calculated as follows: Diversity Order

$$= \mathop {\lim }\limits_{{\overline{\gamma } \to \infty }} \frac{{ - logP_{primary}^{out} }}{{log\left( {\overline{\gamma }} \right)}} = \mathop {{\text{lim}}}\limits_{{\overline{\gamma } \to \infty }} \frac{{ - log\left( {\varsigma \left( {\overline{\gamma }} \right)^{{ - \left( {N - x + 1} \right)}} } \right)}}{{log\left( {\overline{\gamma }} \right)}} = N - x + 1.$$

Appendix 2

At high SNR, Eqs. (28) and (30) can be approximated as

$$P\left( {C_{j} } \right) = 1$$
$$P\left( {D_{j} } \right) = \left\{ {\begin{array}{*{20}l} {\varsigma_{{1,C_{j} }} \left( {\overline{\gamma }} \right)^{{ - \left( {j - n - 1} \right)}} ,} \hfill & {m \le y + 1} \hfill \\ {\varsigma_{{2,C_{j} }} \left( {\overline{\gamma }} \right)^{{ - \left( {j - n - 1} \right)\left( {m - y} \right)}} ,} \hfill & {m > y + 1} \hfill \\ \end{array} } \right.$$
(42)

where

$$\begin{aligned} \varsigma_{{1,C_{j} }} & = \mathop \prod \limits_{b = 1}^{j - n - 1} \lambda_{{PT_{O} ,ST_{qb} }} \gamma_{k} \\ \varsigma_{{2,C_{j} }} & = \mathop \prod \limits_{b = 1}^{j - n - 1} \lambda_{{PT_{O} ,ST_{qb} }} \gamma_{k} \mathop \prod \limits_{g = y + 1}^{n} \frac{{\lambda_{{ST_{pg} ,ST_{qb} }} \gamma_{k} }}{{\alpha_{{P_{g} }} - \left( {1 - \alpha_{{P_{g} }} } \right)\gamma_{k} }} \\ \end{aligned}$$

The outage probability for each possible set of \(C_{j}\) is approximated as

$$P_{out}^{{SR_{j} }} = \mathop \sum \limits_{C} P\left( {C_{j} } \right)P\left( {D_{j} } \right)\left[ {1 - \left( {1 - P_{out}^{{ST_{j} }} } \right)\left( {1 - P_{{out,x_{s} }}^{{SR_{j} }} } \right)\left( {1 - P_{{out,P_{{ST_{1} }} }}^{{SR_{j} }} } \right)} \right]$$
$$P_{out}^{{SR_{j} }} = \left\{ {\begin{array}{*{20}l} {\varsigma_{{1,C_{j} }} \varsigma_{{3,C_{j} }} \left( {\overline{\gamma }} \right)^{{ - \left( {j - n} \right)}} ,} \hfill & {m \le y + 1} \hfill \\ {\varsigma_{{2,C_{j} }} \varsigma_{{4,C_{j} }} \left( {\overline{\gamma }} \right)^{{ - \left( {j - n - 1} \right)\left( {m - y} \right) - 1}} ,} \hfill & {m > y + 1} \hfill \\ \end{array} } \right.$$

where

$$\varsigma_{{3,C_{j} }} = \left( {\lambda_{{PT_{O} ,ST_{j } }} + \lambda_{{PT_{O} ,SR_{j } }} + \frac{{\lambda_{{ST_{j } ,SR_{j } }} }}{{1 - \alpha_{j} }}} \right)\gamma_{k}$$
$$\varsigma_{{4,C_{j} }} = \frac{{\lambda_{{ST_{j } ,SR_{j } }} }}{{1 - \alpha_{j} }}\gamma_{k}$$

If all the secondary transmitters \(ST_{1} ,ST_{2} ,...,ST_{j - 1}\) can decode the primary signal \(x_{s}\) successfully, the above equation can be approximated as

$$P_{out}^{{SR_{j} }} = \left\{ {\begin{array}{*{20}l} {\varsigma_{{1,C_{j} }} \varsigma_{{3,C_{j} }} \left( {\overline{\gamma }} \right)^{ - 1} ,} \hfill & {m \le y + 1} \hfill \\ {\varsigma_{{2,C_{j} }} \varsigma_{{4,C_{j} }} \left( {\overline{\gamma }} \right)^{ - 1} ,} \hfill & {m > y + 1} \hfill \\ \end{array} } \right.$$
(43)

It is easy to see that \(\left( {j - n - 1} \right)\left( {m - y} \right) + 1 \ge j - n \ge 1\). Hence the outage probability of the secondary network can be approximated at high SNR as

$$P_{out}^{{SR_{j} }} = \varsigma_{j} \left( {\overline{\gamma }} \right)^{ - 1}$$
(44)

where \(\varsigma_{j}\) is a constant. The outage probability of secondary system can be calculated as

$$P_{Secondary}^{out} = \mathop \prod \limits_{j = 1}^{N} P_{out}^{{SR_{j} }} \approx \left( {\overline{\gamma }} \right)^{ - N} \mathop \prod \limits_{j = 1}^{N} \varsigma_{j}$$
(45)

From the definition of diversity order, the diversity gain of STj-SRj link and secondary system are calculated as 1 and N respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devipriya, S., Martin Leo Manickam, J. & Anita, X. On the outage performance of decode-and-forward based relay ordering in cognitive wireless sensor networks. Wireless Netw 28, 3247–3259 (2022). https://doi.org/10.1007/s11276-022-03038-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03038-1

Keywords

Navigation