Skip to main content

Advertisement

Log in

Performance analysis and optimization of ergodic secrecy rates for downlink data transmission in massive MIMO-NOMA networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we investigate the secrecy performance of a massive MIMO NOMA network. Specifically, we demonstrate a detailed training process in the network and derive downlink ergodic secrecy rates of legitimate users. In order to gain system’s insights, discussions on secrecy performance of the network in two special cases, i.e., large number of antennas and high transmit power at the BS, are provided. Furthermore, from the analysis, an optimization to maximize the users’ minimum secrecy rate in each NOMA cluster is proposed to aid the weak users’ secrecy performance. The correctness of our analysis and the efficiency of the proposed are confirmed through computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The reason for choosing EPA as a benchmark is that an optimization algorithm for users’ minimum secrecy rate of the exact system model has not been developed in the literature yet. Therefore, in this situation, in the literature, equal power allocation is often preferred as in [7], [11] and the references therein. Besides, although the idea of this scheme is straightforward, it still provides secrecy transmissions for weakest users of the proposed system, i.e., non-zero ergodic secrecy rate, as seen in Figs. 5, 6, and 7. As a result, EPA is a decent benchmark of the proposed optimization algorithm.

References

  1. Barros, J., Rodrigues, D., & M.R. ‘Secrecy capacity of wireless channels’. (2006). IEEE International Symposium on Information Theory, 2006, 356–360.

  2. Hochwald, B. M., Marzetta, T. L., & Tarokh, V. (2004). Multiple-antenna channel hardening and its implications for rate feedback and scheduling. IEEE Transaction on Information Theory, 50(9), 1893–1909.

    Article  MathSciNet  Google Scholar 

  3. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  4. Kay, S.M. (1997) ‘Fundamentals of statistical signal processing: Estimation theory’,

  5. Kudathanthirige, D., & Baduge, G.A.A. (2019) ‘NOMA-aided multicell downlink massive MIMO’, IEEE Journal of Selected Topics in Signal Processing , 13, (3), pp. 612–627

  6. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  7. Marzetta, T.L., Larsson, E.G., Yang, H., & Ngo, H.Q. (2016) ‘Fundamentals of Massive MIMO’,

  8. Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communication Survey Tutorials, 16(3), 1550–1573.

    Article  Google Scholar 

  9. Nguyen, N., Dobre, O. A., Nguyen, L. D., Nguyen, C. T., Poor, H. V., & ‘Secure downlink massive MIMO-NOMA network in the presence of a multiple-antenna eavesdropper’. (2019). IEEE International Conference on Communications, 2019, 1–6.

  10. Nguyen, H. T., Nguyen, N., Pham, A. T., Nguyen, C. T., & ‘Performance analysis of ergodic secrecy rates in massive MIMO-NOMA networks with zero-forcing precoding’. (2019). International Conference on Advanced Technologies for Communications, 2019, 204–209.

  11. Nguyen, N., Ngo, H. Q., Duong, T. Q., Tuan, H. D., & Tourki, K. (2018). Secure massive MIMO with the artificial noise-aided downlink training. IEEE Journal on Selected Areas in Communications, 36(4), 802–816.

    Article  Google Scholar 

  12. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K., & ‘Non-orthogonal multiple access (NOMA) for cellular future radio access’. (2013). IEEE 77th Vehicular Technology Conference, 2013, 1–5.

  13. Sheng, Z., Tuan, H. D., Nasir, A. A., Duong, T. Q., & Poor, H. V. (2018). Power allocation for energy efficiency and secrecy of wireless interference networks. IEEE Transaction on Wireless Communication, 17(6), 3737–3751.

    Article  Google Scholar 

  14. Zeng, M., Nguyen, N., Dobre, O. A., & Poor, H. V. (2019). Securing downlink massive MIMO-NOMA networks with artificial noise. IEEE Journal of Selected Topics in Signal Processing, 13(3), 685–699.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Hanoi University of Science and Technology (HUST) under project number T2020-SAHEP-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyen T. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented in part at the 2019 International Conference on Advanced Technologies for Communications (ATC) in Hanoi, Vietnam [10]

Appendices

Appendices

$$\begin{aligned} \mathbb {E}\left\{ {\varvec{\hat{f}}_{n}^H}{\varvec{z}_n}\right\}&= \mathbb {E}\left\{ {\varvec{\hat{f}}_{n}^H}{\frac{\varvec{v}_n}{\Vert \varvec{v}_n\Vert }}\right\} = \mathbb {E}\left\{ {\varvec{\hat{f}}_{n}^H}{\frac{\varvec{\hat{f}}_n(\varvec{\hat{f}}_n^H\varvec{\hat{f}}_n)^{-1}}{\Vert \varvec{v}_n\Vert }}\right\} \nonumber \\&= \mathbb {E}\left\{ \frac{1}{\Vert \varvec{v}_n\Vert }\right\} = \mathbb {E}\left\{ \frac{1}{\sqrt{\varvec{v}_n^H\varvec{v}_n}}\right\} \nonumber \\&= \mathbb {E}\left\{ \sqrt{\frac{1}{(\varvec{\hat{f}}_n(\varvec{\hat{f}}_n^H\varvec{\hat{f}}_n)^{-1})^H(\varvec{\hat{f}}_n(\varvec{\hat{f}}_n^H\varvec{\hat{f}}_n)^{-1})}}\right\} \nonumber \\&=\mathbb {E}\left\{ \sqrt{\frac{1}{(\varvec{\hat{f}}_n^H\varvec{\hat{f}}_n)^{-1}}}\right\} = \frac{1}{\sqrt{2}}\mathbb {E}\left\{ X^{\frac{1}{2}}\right\} \nonumber \\&= \frac{1}{\sqrt{2}}\sqrt{2}\frac{P(\frac{1}{2} + \frac{2(M- C + 1)}{2})}{P(\frac{2(M- C + 1)}{2})} \nonumber \\&= \frac{P(M- C + 1 + \frac{1}{2})}{P(M- C + 1)} \overset{(a)}{\approx } M- C + 1, \end{aligned}$$
(39)

where X follows Chi-squared distribution with \(2(M- C + 1)\) degrees of freedom as described in [2]. Step (a) of (39) can be achieved when \(M\) is large [10].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, NP., Nguyen, L.D., Nguyen, H.T. et al. Performance analysis and optimization of ergodic secrecy rates for downlink data transmission in massive MIMO-NOMA networks. Wireless Netw 28, 355–365 (2022). https://doi.org/10.1007/s11276-021-02867-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02867-w

Keywords

Navigation