Skip to main content

Advertisement

Log in

Trade-off between spectral efficiency and normalized energy in Ad-hoc wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the ever-increasing deployment of wireless communication technologies, effective management of scarce power and radio spectrum resources is of primary concern. The available bandwidth spectrum should be utilized in the most efficient and controlled way for practical economic growth of industries in conformity with the evolving demand of energy for powering wireless devices. In the proposed optimization scheme, energy management and limited spectrum sharing are distributively implemented for handling quality of service provisioning and potential resource allocation across multiple nodes with inherent operational capability deficiencies. We employ cross-layer information exchange and convex optimization techniques to simultaneously achieve more efficient radio spectrum usage and optimal energy consumption in ad-hoc wireless networks with distributed scenarios. We consider the time-invariant additive white Gaussian noise channel and the time-varying Rayleigh fading channel to study the trade-off between the two network design objectives of achieving improved spectrum efficiency and minimizing the energy overhead in data routing paradigm. The original problem is transformed into an equivalent convex optimization problem through logarithmic processing to obtain the approximate global optimal solution. Moreover, the robustness and efficiency of the proposed framework is evaluated in large-scale set ups to provide the scalability analysis on both the employed performance objectives. The developed optimization scheme is compared with the machine learning models previously proposed in literature by employing the computational and/or time complexity metrics. Finally, the effectiveness of the proposed optimization model is substantiated through the simulation comparison results with the existing schemes in terms of various key performance parameters such as throughput, energy efficiency, and average bit errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kastrinogiannis, T., Tsiropoulou, E. E., & Papavassiliou, S. (2008). Utility-based uplink power control in CDMA wireless networks with real-time services. In Ad-hoc, Mobile and Wireless Networks, 7th International Conference, ADHOC-NOW 2008, Sophia-Antipolis, France. Lecture Notes in Computer Science 5198, Springer 2008, pp. 307–-320. https://doi.org/10.1007/978-3-540-85209-4_24

  2. Bayhan, S., & Alagoz, F. (2013). Scheduling in centralized cognitive radio networks for energy efficiency. IEEE Transactions on Vehicular Technology, 62(2), 582–595. https://doi.org/10.1109/TVT.2012.2225650.

    Article  Google Scholar 

  3. Zhao, J., & Yuan, J. (2013). An improved centralized cognitive radio network spectrum allocation algorithm based on the allocation sequence. International Journal of Distributed Sensor Networks, 9(10), 13. https://doi.org/10.1155/2013/875342.

    Article  Google Scholar 

  4. Ibrahim, R., Assaad, M., Sayrac, B., & Gati, A. (2019). Distributed vs. Centralized Scheduling in D2D-enabled Cellular Networks. Computer Science, Mathematics, arXiv:1806.02081v6 [cs.IT], p. 15.

  5. Tsiropoulou, E. E., Kastrinogiannis, T., & Papavassiliou, S. (2009). Uplink power control in QoS-aware multi-service CDMA wireless networks. Journal of Communications, 4(9), 654–668. https://doi.org/10.4304/jcm.4.9.654-668.

    Article  MATH  Google Scholar 

  6. Ding, L., Melodia, T., Batalama, S. N., & Matyjas, J. D. (2015). Distributed resource allocation in cognitive and cooperative ad hoc networks through joint routing, relay selection and spectrum allocation. Computer Networks, 83, 315–331. https://doi.org/10.1016/j.comnet.2015.02.027.

    Article  Google Scholar 

  7. Bardan, Z. A. S., & Mule, S. B. (2016). Dynamic and energy efficient resource allocation method for cognitive radio networks. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE), 4(6), 259–263. https://doi.org/10.17148/IJIREEICE.2016.4659.

    Article  Google Scholar 

  8. Huang, X., Shi, L., Zhang, C., Zhang, D., & Chen, Q. (2017). Distributed resource allocation with imperfect spectrum sensing information and channel uncertainty in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2017, 201. https://doi.org/10.1186/s13638-017-0985-1.

    Article  Google Scholar 

  9. Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2018). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, 66(4), 1705–1716. https://doi.org/10.1109/TCOMM.2017.2763623.

    Article  Google Scholar 

  10. Kakhandki, A. L., Hublikar, S., & Priyatamkumar. (2017). Energy efficient selective hop selection optimization to maximize lifetime of wireless sensor network. Alexandria Engineering Journal., 57(2), 711–718. https://doi.org/10.1016/j.aej.2017.01.041.

    Article  Google Scholar 

  11. Wu, C., Wang, Y., & Yin, Z. (2018). Energy-efficiency opportunistic spectrum allocation in cognitive wireless sensor network. EURASIP Journal on Wireless Communications and Networking., 2018, 13. https://doi.org/10.1186/s13638-017-1018-9.

    Article  Google Scholar 

  12. Al-Medhwahi, M., Hashim, F., Ali, B. M., Sali, A., & Alkholidi, A. (2019). Resource allocation in heterogeneous cognitive radio sensor networks. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147719851944.

    Article  Google Scholar 

  13. Gao, A., Hu, Y., Li, L., & Li, X. (2018). BP network control for resource allocation and QoS ensurance in UAV Cloud. Journal of Sensors, 2018, Article ID 1419843, p. 14. https://doi.org/10.1155/2018/1419843.

  14. Nguyen, L. D. (2018). Resource allocation for energy efficiency in 5G wireless networks. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems. https://doi.org/10.4108/eai.27-6-2018.154832.

    Article  Google Scholar 

  15. Xu, H., Gao, H., Zhou, C., Duan, R., & Zhou, X. (2019). Resource allocation in cognitive radio wireless sensor networks with energy harvesting. Sensors (Basel), 19(23), 5115. https://doi.org/10.3390/s19235115.

    Article  Google Scholar 

  16. Mehta, R., & Lobiyal, D. K. (2019). Performance modeling and optimization of multiple-objective cross-layer design in multi-flow ad-hoc networks. International Journal of Communication Systems, 32, e3861. https://doi.org/10.1002/dac.3861.

    Article  Google Scholar 

  17. Huang, W., Chen, W., & Poor, H. V. (2018). Energy efficient pushing in AWGN channels based on content request delay information. IEEE Transactions on Communications, 66(8), 3667–3682. https://doi.org/10.1109/TCOMM.2018.2816069.

    Article  Google Scholar 

  18. Chaochen, X., Xiaoheng, T., Balginbek, T., Qian, Q., & Xiaoliang, Z. (2018). Research of resource allocation technology based on MIMO ultra density heterogeneous network for 5G. Procedia Computer Science, 131, 1039–1047. https://doi.org/10.1016/j.procs.2018.04.255.

    Article  Google Scholar 

  19. Kasi, S. K., Naqvi, I. H., Kasi, M. K., & Yaseen, F. (2019). Interference management in dense inband D2D network using spectral clustering & dynamic resource allocation. Wireless Networks, 25(7), 4431–4441. https://doi.org/10.1007/s11276-019-02107-2.

    Article  Google Scholar 

  20. Ojo, F. K., Akande, D. O., & Salleh, M. F. M. (2019). An overview of RF energy harvesting and information transmission in cooperative communication networks. Telecommunication Systems, 70(2), 295–308. https://doi.org/10.1007/s11235-018-0483-8.

    Article  Google Scholar 

  21. Sundan, A. P., Jha, R. K., & Gupta, A. (2020). Energy and spectral efficiency optimization using probabilistic based spectrum slicing (PBSS) in different zones of 5G wireless communication network. Telecommunication Systems, 73(1), 59–73. https://doi.org/10.1007/s11235-019-00598-0.

    Article  Google Scholar 

  22. Chen, X., Hu, R. Q., Wu, G., & Li, Q. C. (2015). Tradeoff between energy efficiency and spectral efficiency in a delay constrained wireless system. Wireless Communications and Mobile Computing, 15, 1945–1956. https://doi.org/10.1002/wcm.2469.

    Article  Google Scholar 

  23. Yu, W., Musavian, L., & Ni, Q. (2015). Multi-carrier link-layer energy efficiency and effective capacity tradeoff. In 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, pp. 2763–2768. https://doi.org/10.1109/ICCW.2015.7247597.

  24. Xiang, L., Chen, H., & Zhao, F. (2017). Area spectral efficiency and energy efficiency tradeoff in ultradense heterogeneous networks. Wireless Communications and Mobile Computing, 2017, Article ID 4390197, p. 8. https://doi.org/10.1155/2017/4390197.

  25. Maharazu, M., Hanapi, Z. M., & Alrashah, M. A. (2021). Energy and spectral efficiency balancing algorithm for energy saving in LTE downlinks. Symmetry, 13(211), 19. https://doi.org/10.3390/sym13020211.

    Article  Google Scholar 

  26. Jaishanthi, B., Ganesh, E. N., & Sheela, D. (2019). Priority-based reserved spectrum allocation by multi-agent through reinforcement learning in cognitive radio network. Automatika, 60(5), 564–569. https://doi.org/10.1080/00051144.2019.1674512.

    Article  Google Scholar 

  27. Liu, Z. M., Nasser, N., & Hassanein, H. S. (2013). Intelligent spectrum assignment and migration in cognitive radio network. EURASIP Journal on Wireless Communications and Networking, 2013, 200. https://doi.org/10.1186/1687-1499-2013-200.

    Article  Google Scholar 

  28. Ioannou, I., Vassiliou, V., Christophorou, C., & Pitsillides, A. (2020). Distributed artificial intelligence solution for D2D communication in 5G networks. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.2979044.

    Article  Google Scholar 

  29. Mehta, R. (2020). Multi-objective design of energy harvesting enabled wireless networks based on evolutionary genetic optimisation. IET Networks, 9(6), 360–366. https://doi.org/10.1049/iet-net.2020.0093.

    Article  Google Scholar 

  30. Singhal, C., & De, S. (2017). Resource allocation in next-generation broadband wireless access networks. IGI Global. https://doi.org/10.4018/978-1-5225-2023-8.

    Article  Google Scholar 

  31. Murthy, C. S. R., & Manoj, B. S. (2007). Ad Hoc wireless networks, architectures and protocols. (2nd ed.). Pearson Education.

    Google Scholar 

  32. Rappaport, T. S. (1996). Wireless communications: Principles & practice. . Upper Saddle River, NJ: Prentice Hall Inc.

    MATH  Google Scholar 

  33. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear programming: Theory and algorithms 3. . New York, NY: Wiley.

    Book  Google Scholar 

  34. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. . Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  35. Grant M., & Boyd, S. (2011). CVX: Matlab software for disciplinedconvex programming, version 1.21, build 808. Available [Online]: http://cvxr.com/cvx.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridhima Mehta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, R. Trade-off between spectral efficiency and normalized energy in Ad-hoc wireless networks. Wireless Netw 27, 2615–2627 (2021). https://doi.org/10.1007/s11276-021-02610-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02610-5

Keywords

Navigation