Skip to main content
Log in

Energy-efficient aware and predicting bandwidth estimation routing protocol for hybrid communication in wireless body area networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Wireless body area networks (WBANs) are an emerging field in the domain of healthcare which are typically composed of biomedical sensors. These sensors are implanted inside or attached to the human body for monitoring a patient’s condition and providing accurate treatment to patients. In WBANs, energy efficiency is a critical concern due to the restricted battery capacity of the sensors. Extending the network lifetime and reducing the energy consumption of these sensor nodes can significantly impact the reliability and effectiveness of WBANs in monitoring patients’ health. An efficient routing protocol based on energy-related parameters is crucial in designing these networks. Although many routing protocols have been proposed for routing in WBANs, sufficient features have not been properly handled in these methods. To overcome these issues, a novel routing protocol named Simple Energy Efficient and Bandwidth Aware (SEBA) routing protocol is proposed for routing in WBANs. The proposed scheme considers multiple metrics of the network node, such as remaining energy, energy harvesting, draining rate energy, available bandwidth, and number of hops in a route selection to minimize energy consumption, increase network lifetimes, and enhance the reliability of data transmission in WBANs. Additionally, the SEBA uses a novel mechanism to change the route dynamically based on energy consumption. This mechanism plays a significant role in reducing the number of route errors, route discoveries, and distributing energy consumption among sensor nodes. The experimental results reveal that the proposed scheme performs well in terms of average network throughput, packet delivery ratio, normalized routing load, average end-to-end delay, energy consumption, and network lifetime compared with the existing AMCRP, EEMP, and EAR protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

The code used or analyzed during the current study is available from the corresponding author upon reasonable request.

References

  1. Ullah, F., Khan, M.Z., Faisal, M., Rehman, H.U., Abbas, S., Mubarek, F.S.: An energy efficient and reliable routing scheme to enhance the stability period in wireless body area networks. Comput. Commun. 165, 20–32 (2021)

    Article  Google Scholar 

  2. Javaheri, D., Lalbakhsh, P., Gorgin, S., Lee, J.A., Masdari, M.: A new energy-efficient and temperature-aware routing protocol based on fuzzy logic for multi-WBANs. Ad Hoc Netw. 139, 103042 (2023)

    Article  Google Scholar 

  3. Hasan, K., Biswas, K., Ahmed, K., Nafi, N.S., Islam, M.S.: A comprehensive review of wireless body area network. J. Netw. Comput. Appl. 143, 178–198 (2019)

    Article  Google Scholar 

  4. Yaghoubi, M., Ahmed, K., Miao, Y.: Wireless body area network (WBAN): a survey on architecture, technologies, energy consumption, and security challenges. J. Sens. Actuator Netw. 11(4), 67 (2022)

    Article  Google Scholar 

  5. Qu, Y., Zheng, G., Wu, H., Ji, B., Ma, H.: An energy-efficient routing protocol for reliable data transmission in wireless body area networks. Sensors 19(19), 4238 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Qu, Y., Zheng, G., Ma, H., Wang, X., Ji, B., Wu, H.: A survey of routing protocols in WBAN for healthcare applications. Sensors 19(7), 1638 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Arafat, M.Y., Pan, S., Bak, E.: Distributed energy-efficient clustering and routing for wearable iot enabled wireless body area networks. IEEE Access 11, 5047 (2023)

    Article  Google Scholar 

  8. Zaman, K., Sun, Z., Hussain, A., Hussain, T., Ali, F., Shah, S.M., Rahman, H.U.: EEDLABA: energy-efficient distance-and link-aware body area routing protocol based on clustering mechanism for wireless body sensor network. Appl. Sci. 13(4), 2190 (2023)

    Article  CAS  Google Scholar 

  9. Wu, H., Zhu, H., Gu, J., Peng, C., Han, X.: Efficient Health data transmission method in a wireless body area network for rural elderly. Electronics 11(18), 2817 (2022)

    Article  Google Scholar 

  10. Abdullah, A., Ozen, E., Bayramoglu, H.: Enhanced-AODV routing protocol to improve route stability of MANETs. Int Arab J Inform Technol 19(5), 736–746 (2022)

    Google Scholar 

  11. Abdullah, A.M.: A novel routing protocol for VANETs based on link stability and available bandwidth. Adhoc Sensor Wireless Netw. 55, 1 (2023)

    Google Scholar 

  12. Shrivastava, P.K., Vishwamitra, L.K.: Comparative analysis of proactive and reactive routing protocols in VANET environment. Meas.: Sens. 16, 100051 (2021)

    Google Scholar 

  13. Gul, O.M.: Energy harvesting and task-aware multi-robot task allocation in robotic wireless sensor networks. Sensors 23(6), 3284 (2023)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, L., Zhang, B., Li, C.: An efficient and reliable byzantine fault tolerant blockchain consensus protocol for single-hop wireless networks. IEEE Trans. Wirel. Commun. (2023). https://doi.org/10.1109/TWC.2023.3293709

    Article  Google Scholar 

  15. Hai, T., Zhou, J., Masdari, M., Marhoon, H.A.: A hybrid marine predator algorithm for thermal-aware routing scheme in wireless body area networks. J. Bionic Eng. 20(1), 81–104 (2023)

    Article  Google Scholar 

  16. Salim, A.: An approach for data routing in wireless body area network. Wirel. Pers. Commun. 130(1), 377–399 (2023)

    Article  Google Scholar 

  17. Mateen Yaqoob, M., Khurshid, W., Liu, L., Zulqarnain Arif, S., Ali Khan, I., Khalid, O., Nawaz, R.: Adaptive multi-cost routing protocol to enhance lifetime for wireless body area network. Comput. Mater. Continua 72(1), 1089–1103 (2022)

    Article  Google Scholar 

  18. Chavva, S.R., Sangam, R.S.: An energy-efficient multi-hop routing protocol for health monitoring in wireless body area networks. Netw. Model. Anal. Health Inform. Bioinform. 8, 1–10 (2019)

    Article  Google Scholar 

  19. Qureshi, K.N., Din, S., Jeon, G., Piccialli, F.: Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Comput. Commun. 149, 382–392 (2020)

    Article  Google Scholar 

  20. Esmaeili, H., Bidgoli, B.M.: EMRP: evolutionary-based multi-hop routing protocol for wireless body area networks. AEU-Int. J. Electron. Commun. 93, 63–74 (2018)

    Article  Google Scholar 

  21. Ullah, F., Khan, M.Z., Mehmood, G., Qureshi, M.S., Fayaz, M.: Energy efficiency and reliability considerations in wireless body area networks: a survey. Comput. Math. Methods Med. 2022, 15 (2022)

    Article  Google Scholar 

  22. Elias, J.: Optimal design of energy-efficient and cost-effective wireless body area networks. Ad Hoc Netw. 13, 560–574 (2014)

    Article  Google Scholar 

  23. Javaid, N., Abbas, Z., Fareed, M.S., Khan, Z.A., Alrajeh, N.: M-ATTEMPT: a new energy-efficient routing protocol for wireless body area sensor networks. Proc. Comput. Sci. 19, 224–231 (2013)

    Article  Google Scholar 

  24. Raja, K.S., Kiruthika, U.: An energy efficient method for secure and reliable data transmission in wireless body area networks using RelAODV. Wirel. Pers. Commun. 83, 2975–2997 (2015)

    Article  Google Scholar 

  25. Panhwar, M.A., Zhong Liang, D., Memon, K.A., Khuhro, S.A., Abbasi, M.A.K., Ali, Z.: Energy-efficient routing optimization algorithm in WBANs for patient monitoring. J. Ambient. Intell. Humaniz. Comput. 12, 8069–8081 (2021)

    Article  Google Scholar 

  26. Ahmed, O., Hu, M., Ren, F.: PEDTARA: priority-based energy efficient, delay and temperature aware routing algorithm using multi-objective genetic chaotic spider monkey optimization for critical data transmission in WBANs. Electronics 11(1), 68 (2021)

    Article  CAS  Google Scholar 

  27. Wang, X., Zheng, G., Ma, H., Bai, W., Wu, H., Ji, B.: Fuzzy control-based energy-aware routing protocol for wireless body area networks. J. Sens. 2021, 1–13 (2021)

    Google Scholar 

  28. Iqbal, S., Ahmed, A., Siraj, M., Al Tamimi, M., Bhangwar, A.R., Kumar, P.: A multi-hop QoS-aware and predicting link quality estimation (PLQE) routing protocol for reliable WBSN. IEEE Access 11, 35993 (2023)

    Article  Google Scholar 

  29. Kiran, M.V., Nithya, B.: Stable and energy-efficient next-hop router selection (SE-NRS) for wireless body area networks. Int. J. Inf. Technol. 15(2), 1189–1200 (2023)

    Google Scholar 

  30. Anbarasan, H.S., Natarajan, J.: Blockchain Based delay and energy harvest aware healthcare monitoring system in WBAN environment. Sensors 22(15), 5763 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bedi, P., Das, S., Goyal, S.B., Shukla, P.K., Mirjalili, S., Kumar, M.: A novel routing protocol based on grey wolf optimization and Q learning for wireless body area network. Expert Syst. Appl. 210, 118477 (2022)

    Article  Google Scholar 

  32. Mohanty, R.K., Sahoo, S.P., Kabat, M.R.: Sustainable remote patient monitoring in wireless body area network with multi-hop routing and scheduling: a four-fold objective based optimization approach. Wirel. Netw. (2023). https://doi.org/10.1007/s11276-023-03276-x

    Article  Google Scholar 

  33. Kamruzzaman, M.M., Alruwaili, O.: Energy efficient sustainable wireless body area network design using network optimization with smart grid and renewable energy systems. Energy Rep. 8, 3780–3788 (2022)

    Article  Google Scholar 

  34. Shunmugapriya, B., Paramasivan, B.: Fuzzy based relay node selection for achieving efficient energy and reliability in wireless body area network. Wirel. Pers. Commun. 122, 2723 (2022)

    Article  Google Scholar 

  35. Kaur, N., Singh, S.: Optimized cost effective and energy efficient routing protocol for wireless body area networks. Ad Hoc Netw. 61, 65–84 (2017)

    Article  Google Scholar 

  36. Kim, B.S., Shah, B., Al-Obediat, F., Ullah, S., Kim, K.H., Kim, K.I.: An enhanced mobility and temperature aware routing protocol through multi-criteria decision making method in wireless body area networks. Appl. Sci. 8(11), 2245 (2018)

    Article  Google Scholar 

  37. Ibrahim, A.A., Bayat, O., Ucan, O.N., Eleruja, S.A.: EN-NEAT: enhanced energy efficient threshold-based emergency data transmission routing protocol for wireless body area network. In: Third international congress on information and communication technology: ICICT 2018, pp. 325–334. Springer Singapore, London (2019)

    Chapter  Google Scholar 

  38. Kaur, R., Kaur, B.P., Singla, R.P., Kaur, J.: AMERP: Adam moment estimation optimized mobility supported energy efficient routing protocol for wireless body area networks. Sustain. Comput.: Inform. Syst. 31, 100560 (2021)

    Google Scholar 

  39. Olivia, D., Nayak, A., Balachandra, M.: Data-centric load and QoS-aware body-to-body network routing protocol for mass casualty incident. IEEE Access 9, 70683–70699 (2021)

    Article  Google Scholar 

  40. Samarji, N., Salamah, M.: ERQTM: energy-efficient routing and QoS-supported traffic management scheme for SDWBANs. IEEE Sens. J. 21(14), 16328–16339 (2021)

    Article  ADS  Google Scholar 

  41. Khan, R.A., Xin, Q., Roshan, N.: RK-energy efficient routing protocol for wireless body area sensor networks. Wirel. Pers. Commun. 116, 709–721 (2021)

    Article  Google Scholar 

  42. Rahman, H.U., Ghani, A., Khan, I., Ahmad, N., Vimal, S., Bilal, M.: Improving network efficiency in wireless body area networks using dual forwarder selection technique. Pers. Ubiquit. Comput. 26, 1–14 (2022)

    Article  Google Scholar 

  43. Sakthivel, K., Ganesan, R.: ESTEEM–enhanced stability and throughput for energy efficient multihop routing based on Markov Chain model in wireless body area networks. Sustain. Energy Technol. Assess. 56, 103100 (2023)

    Google Scholar 

  44. Shyja, V.I., Ranganathan, G., Bindhu, V.: Link quality and energy efficient optimal simplified cluster based routing scheme to enhance lifetime for wireless body area networks. Nano Commun. Netw. 37, 100465 (2023)

    Article  Google Scholar 

  45. Aryai, P., Khademzadeh, A., JafaraliJassbi, S., Hosseinzadeh, M.: SIMOF: swarm intelligence multi-objective fuzzy thermal-aware routing protocol for WBANs. J. Supercomput. 79, 1–36 (2023)

    Article  Google Scholar 

  46. Takabayashi, K., Tanaka, H., Sugimoto, C., Sakakibara, K., Kohno, R.: Performance evaluation of a quality of service control scheme in multi-hop WBAN based on IEEE 802.15.6. Sensors 18(11), 3969 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Zhumayeva, M., Dautov, K., Hashmi, M., Nauryzbayev, G.: Wireless energy and information transfer in WBAN: a comprehensive state-of-the-art review. Alex. Eng. J. 85, 261–285 (2023)

    Article  Google Scholar 

  48. Hu, J., Xu, G., Hu, L., Li, S.: A cooperative transmission scheme in radio frequency energy-harvesting WBANs. Sustainability 15(10), 8367 (2023)

    Article  Google Scholar 

  49. Mohammadi, R., Shirmohammadi, Z.: RLS2: an energy efficient reinforcement learning-based sleep scheduling for energy harvesting WBANs. Comput. Netw. 229, 109781 (2023)

    Article  Google Scholar 

  50. Dziadak, B., Makowski, Ł, Kucharek, M., Jóśko, A.: Energy harvesting for wearable sensors and body area network nodes. Energies 16(4), 1681 (2023)

    Article  Google Scholar 

  51. Saxena, D., Patel, P.: Energy-efficient clustering and cooperative routing protocol for wireless body area networks (WBAN). Sādhanā 48(2), 71 (2023)

    Article  Google Scholar 

  52. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd annual Hawaii international conference on system sciences, pp. 10. IEEE (2000)

  53. Smith, D.B., Miniutti, D., Lamahewa, T.A., Hanlen, L.W.: Propagation models for body-area networks: a survey and new outlook. IEEE Antennas Propag. Mag. 55(5), 97–117 (2013)

    Article  ADS  Google Scholar 

  54. Belbachir, R., MekkakiaMaaza, Z., Kies, A.: The mobility issue in admission controls and available bandwidth measures in MANETs. Wirel. Pers. Commun. 70, 743–757 (2013)

    Article  Google Scholar 

  55. Chen, L., Heinzelman, W.B.: QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE J. Sel. Areas Commun. 23(3), 561–572 (2005)

    Article  Google Scholar 

  56. Johnsson, A., Melander, B., Björkman, M.: Bandwidth measurement in wireless networks. In: Challenges in ad hoc networking: fourth annual mediterranean ad hoc networking workshop, pp. 89–98. Springer, US (2006)

    Chapter  Google Scholar 

  57. Nadeem, Q., Javaid, N., Mohammad, S.N., Khan, M.Y., Sarfraz, S., Gull, M.: Simple: Stable increased-throughput multi-hop protocol for link efficiency in wireless body area networks. In: 2013 Eighth international conference on broadband and wireless computing, communication and applications, pp. 221–226. (2013)

  58. Jamil, F., Iqbal, M.A., Amin, R., Kim, D.: Adaptive thermal-aware routing protocol for wireless body area network. Electronics 8(1), 47 (2019)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

A.A confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Ako Muhammad Abdullah.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, A.M. Energy-efficient aware and predicting bandwidth estimation routing protocol for hybrid communication in wireless body area networks. Cluster Comput (2024). https://doi.org/10.1007/s10586-023-04262-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-023-04262-w

Keywords

Navigation