Skip to main content

Advertisement

Log in

Full-duplex wireless information and power transfer in two-way relaying networks with self-energy recycling

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we consider full-duplex (FD) two-way relaying networks, where wireless power transfers from hybrid power access-point, H to user and wireless information transmits from user to H via relay. We propose FD-based power splitting (PS) and time-switching (TS) protocols which enables the energy harvesting (EH) and information processing at relay. These protocols overcome the limitation of spectral efficiency and in band self-interference caused by half-duplex relaying and operation of FD respectively. The energy constraint nodes such as relay and user harvest energy from H by radio-frequency signal, where relay also harvests energy by self-energy recycling. The optimal PS ratio and the optimal TS ratio are investigated and expressed in closed-form. With Rayleigh fading channel, we derive the end-to-end ergodic capacity for PS and TS protocols. Numerical results show that our proposed FD-based EH schemes outperform the benchmark schemes significantly. In particular, the PS protocol is superior to TS protocol at high transmit power of H while at low transmit power of H, TS protocol is better than the PS protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vullers, R. J. M., Schaijk, R. V., Doms, I., Hoof, C. V., & Mertens, R. (2009). Micropower energy harvesting. Elsevier Solid-State Circuits, 53(7), 684–693.

    Google Scholar 

  2. Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory, Toronto, ON, Canada (pp. 1612–1616).

  3. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: wireless information and power transfer. In Proceedings 2010 IEEE international symposium on information theory, Austin, TX, USA (pp. 2363–2367).

  4. Popovski, P., Fouladgar, A. M., & Simeone, O. (2013). Interactive joint transfer of energy and information. IEEE Transactions on Communications, 61(5), 2086–2097.

    Article  Google Scholar 

  5. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 31989–32001.

    Google Scholar 

  6. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  7. Chen, H., Li, Y., Rebelatto, J. L., Filho, B. F. U., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.

    Article  MathSciNet  MATH  Google Scholar 

  8. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2015). Wireless-powered relays in cooperative communications: Time-switching relaying protocols and throughput analysis. IEEE Transactions on Communications, 63(5), 1607–1622.

    Article  Google Scholar 

  9. Gu, Y., & Aïssa, S. (2105). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14(11), 6425–6434.

    Article  Google Scholar 

  10. Liu, P., Gazor, S., Kim, I. M., & Kim, D. I. (2015). Noncoherent relaying in energy harvesting communication systems. IEEE Transactions on Wireless Communications, 14(12), 6940–6954.

    Article  Google Scholar 

  11. Xiong, K., Fan, P., Zhang, C., & Letaief, K. B. (2015). Wireless information and energy transfer for two-hop non-regenerative MIMO-OFDM relay networks. IEEE Journal on Selected Areas in Communications, 33(8), 1595–1611.

    Google Scholar 

  12. Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288.

    Article  Google Scholar 

  13. Kashef, M., & Ephremides, A. (2016). Optimal partial relaying for energy-harvesting wireless networks. IEEE/ACM Transaction on Networking, 24(1), 113–122.

    Article  Google Scholar 

  14. Huang, X., & Ansari, N. (2016). Optimal cooperative power allocation for energy-harvesting-enabled relay networks. IEEE Transactions on Vehicular Technology, 65(4), 2424–2434.

    Article  Google Scholar 

  15. Ding, H., Wang, X., Costa, D. B. D., Chen, Y., & Gong, F. (2017). Adaptive time-switching based energy harvesting relaying protocols. IEEE Transactions on Communications, 65(7), 2821–2837.

    Article  Google Scholar 

  16. Tutuncuoglu, K., Varan, B., & Yener, A. (2015). Throughput maximization for two-way relay channels with energy harvesting nodes: The impact of relaying strategies. IEEE Transactions on Communications, 63(6), 2081–2093.

    Article  Google Scholar 

  17. Zeng, Y., Chen, H., & Zhang, R. (2016). Bidirectional wireless information and power transfer with a helping relay. IEEE Communications Letters, 20(5), 862–865.

    Article  Google Scholar 

  18. Liu, Y., Wang, L., Elkashlan, M., Duong, T. Q., & Nallanathan, A. (2016). Two-way relay networks with wireless power transfer: Design and performance analysis. IET Communications, 10(14), 1810–1819.

    Article  Google Scholar 

  19. Salem, A., & Hamdi, K. A. (2016). Wireless power transfer in multi-pair two-way AF relaying networks. IEEE Transactions on Communications, 64(11), 4578–4591.

    Article  Google Scholar 

  20. Alsharoa, A., Ghazzai, H., Kamal, A. E., & Kadri, A. (2017). Optimization of a power splitting protocol for two-way multiple energy harvesting relay system. IEEE Transactions on Green Communications and Networking, 1(4), 444–457.

    Article  Google Scholar 

  21. Li, S., & Murch, R. D. (2014). An investigation into baseband techniques for single-channel full-duplex wireless communication systems. IEEE Transactions on Wireless Communications, 13(9), 4794–4806.

    Article  Google Scholar 

  22. Zhong, C., Suraweera, H., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.

    Article  Google Scholar 

  23. Zeng, Y., & Zhang, R. (2015). Full-duplex wireless-powered relay with self-energy recycling. IEEE Wireless Communications Letter, 4(2), 201–204.

    Article  Google Scholar 

  24. Wang, D., Zhang, R., Cheng, X., & Yang, L. (2017). Capacity-enhancing full-duplex relay networks based on power-splitting (PS-) SWIPT. IEEE Transactions on Vehicular Technology, 66(6), 5446–5450.

    Google Scholar 

  25. Le, Q. N., Bao, V. N. Q., & An, B. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.

    Article  Google Scholar 

  26. Park, J. J., Moon, J. H., & Kim, D. I. (2016). Time-switching based in-band full duplex wireless powered two-way relay. In URSI Asia-Pacific radio science conference (URSI AP-RASC), South Korea (pp. 438–441).

  27. Park, J. J., Moon, J. H., & Kim, D. I. (2016). Energy signal design and decoding procedure for full-duplex two-way wireless powered relay. In URSI Asia-Pacific radio science conference (URSI AP-RASC), South Korea (pp. 442–445).

  28. Wang, D., Zhang, R., Cheng, X., Yang, L., & Chen, C. (2017). Relay selection in full-duplex energy harvesting two-way relay networks. IEEE Transactions on Green Communications and Networking, 1(2), 182–191.

    Article  Google Scholar 

  29. Chen, G., Xiao, P., Kelly, J. R., Li, B., & Tafazolli, R. M. (2017). Full-duplex wireless-powered relay in two way cooperative networks. IEEE Access, 5, 1548–1558.

    Article  Google Scholar 

  30. Jiang, D., Xu, Z., Li, W., & Chen, Z. (2015). Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks. Journal of Systems and Software, 104, 152–165.

    Article  Google Scholar 

  31. Jiang, D., Xu, Z., Li, W., & Chen, Z. (2017). Topology control-based collaborative multicast routing algorithm with minimum energy consumption. International Journal of Communication Systems, 30(1), 1–18.

    Article  Google Scholar 

  32. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220, 160–169.

    Article  Google Scholar 

  33. Jiang, D., Shi, L., Zhang, P., & Ge, X. (2016). QoS constraints-based energy-efficient model in cloud computing networks for multimedia clinical issues. Multimedia Tools and Applications, 75(22), 14307–14328.

    Article  Google Scholar 

  34. Jiang, D., Liu, J., Lv, Z., Dang, S., Chen, G., & Shi, L. (2016). A robust energy-efficient routing algorithm to cloud computing networks for learning. Journal of Intelligent and Fuzzy Systems, 31(5), 2483–2495.

    Article  Google Scholar 

  35. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.

    Article  Google Scholar 

  36. Huo, L., Jiang, D., & Lv, Z. (2018). Soft frequency reuse-based energy efficiency optimization algorithm for cellular multi-cell networks. Computers & Electrical Engineering, 66(C), 1–16.

    Google Scholar 

  37. Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  38. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  39. Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.

    Article  Google Scholar 

  40. Ju, H., & Zhang, R. (2014). User cooperation in wireless powered communication networks. In IEEE global communication conference (GLOBECOM), Austin, TX, USA (pp. 1430–1435).

  41. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards Applied Mathematics Series: 5. Washington, DC: Dept. of Commerce, National Bureau of Standards.

    MATH  Google Scholar 

  42. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed., pp. 169–242). Pennsylvania: McGraw Hill Education.

    Google Scholar 

  43. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). San Diego: Academic Press.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers, Editor and Editor-in-Chief for their valuable suggestions to improve the quality of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Proof of Theorem 1

In this appendix, we derive the closed-form expression of PS ratio for FD-based EH in two-way AF relaying system. From (19), we can observe that the end-to-end ergodic capacity for PS protocol should be maximized when we maximize the SINR from u-to-H, \(\gamma_{uH}^{PS} \left( \alpha \right)\). For maximizing \(\gamma_{uH}^{PS} \left( \alpha \right)\), we minimize the denominator of (18). For computing the PS ratio, we follow some important steps which is given below.


Step 1: We consider denominator of (18) that can be written as

$$\tilde{\gamma }\left( \alpha \right) = \frac{{a_{1} }}{{1 - \alpha^{2} }} + \frac{{a_{2} }}{1 + \alpha } + \frac{{a_{3} }}{{\left( {1 - \alpha^{2} } \right)\left( {1 + \alpha } \right)}}$$
(52)

where \(a_{1} = \left| {h_{1} } \right|^{2} \sigma_{R}^{2}\), \(a_{2} = \xi \left| {h_{2} } \right|^{4} \sigma_{H}^{2}\) and \(a_{3} = \frac{{\left( {1 - \xi \left| {h_{R} } \right|^{2} } \right)\sigma_{R}^{2} \sigma_{H}^{2} }}{{\xi P_{H} \left| {h_{1} } \right|^{2} }}\).


Step 2: The derivative of \(\tilde{\gamma }\left( \alpha \right)\) with respect to \(\alpha\) can be expressed as

$$\frac{{\delta \tilde{\gamma }\left( \alpha \right)}}{\delta \alpha } = \frac{{2a_{1} \alpha }}{{\left( {1 - \alpha^{2} } \right)^{2} }} - \frac{{a_{2} }}{{\left( {1 + \alpha } \right)^{2} }} - \frac{{a_{3} \left( {1 - 2\alpha - 3\alpha^{2} } \right)}}{{\left\{ {\left( {1 - \alpha^{2} } \right)\left( {1 + \alpha } \right)} \right\}^{2} }}$$
(53)

Step 3: We set \(\frac{{\delta \tilde{\gamma }\left( \alpha \right)}}{\delta \alpha }\) to be zero and then we obtain polynomial in \(\alpha\) as

$$\alpha^{4} - \frac{{2a_{1} }}{{a_{2} }}\alpha^{3} - \left( {2 + \frac{{4a_{1} }}{{a_{2} }} + \frac{{3a_{3} }}{{a_{2} }}} \right)\alpha^{2} - 2\left( {\frac{{a_{1} }}{{a_{2} }} + \frac{{a_{3} }}{{a_{2} }}} \right)\alpha + \left( {1 + \frac{{a_{3} }}{{a_{2} }}} \right) = 0$$
(54)

It is difficult to tractable the closed-form expression of PS ratio,\(\alpha\). Note that the term \(\frac{{a_{3} }}{{a_{2} }} \propto \frac{1}{{P_{H} }}\). Thus, we consider special case as transmit power of H, \(P_{H}\) is very large i.e., \(a_{3} \approx 0\). Hence, polynomial of (54) can be rewritten as

$$\alpha^{4} - a\alpha^{3} - 2\left( {1 + a} \right)\alpha^{2} - a\alpha + 1 = 0$$
(55)

where \(a = \frac{{2a_{1} }}{{a_{2} }} = \frac{{2\left| {h_{1} } \right|^{2} \sigma_{R}^{2} }}{{\xi \left| {h_{2} } \right|^{4} \sigma_{H}^{2} }}\).

The roots of \(\alpha\) can be evaluated with the help of [41, 3.8.3] as

$$\alpha = 1 - \frac{1}{2}\left[ {\sqrt {a\left( {a + 4} \right)} - a} \right]$$
(56)

Step 4: We obtain second derivative of \(\tilde{\gamma }\left( \alpha \right)\) with respect to \(\alpha\) as

$$\frac{{\partial^{2} \tilde{\gamma }\left( \alpha \right)}}{{\partial \alpha^{2} }} = \frac{{2a_{1} \left( {1 + 3\alpha^{2} } \right)}}{{\left( {1 - \alpha^{2} } \right)^{3} }} + \frac{{2a_{2} }}{{\left( {1 + \alpha } \right)^{3} }} + \frac{{4a_{3} \left( {1 + 4\alpha^{3} + 3\alpha^{4} } \right)}}{{\left\{ {\left( {1 - \alpha^{2} } \right)\left( {1 + \alpha } \right)} \right\}^{3} }}$$
(57)

Since, value of \(\alpha\) defines in the range of 0 to 1 i.e., \(0 \le \alpha \le 1\). Thus, we observe that the \(\frac{{\delta^{2} \tilde{\gamma }\left( \alpha \right)}}{{\delta \alpha^{2} }} \ge 0\). Further, we achieve that the \(\tilde{\gamma }\left( \alpha \right)\) is minimum at \(\alpha = 1 - \frac{1}{2}\left[ {\sqrt {a\left( {a + 4} \right)} - a} \right]\). The denominator of \(\gamma \left( \alpha \right)\) i.e., \(\tilde{\gamma }\left( \alpha \right)\) is convex with \(\in \left( {0, 1} \right)\). Thereby, SINR from user to H, \(\gamma_{uH}^{PS} \left( \alpha \right)\) is concave with \(\alpha \in \left( {0, 1} \right)\). Finally, we conclude that the end-to-end capacity from u-to-H for PS protocol achieves maximum at \(\alpha = 1 - \frac{1}{2}\left[ {\sqrt {a\left( {a + 4} \right)} - a} \right]\). Thus, this completes the Proof of Theorem 1.

Appendix 2

2.1 Proof of Theorem 2 and Lemma 1

In this section, we investigate the closed-form expression of ergodic capacity from u-to-H for Rayleigh fading.

Proof of Theorem 1

We assume that the fading gains \(x = \left| {h_{1} } \right|^{2}\), \(y = \left| {h_{2} } \right|^{2}\) and residual self-interference channel gain, \(z = \left| {h_{R} } \right|^{2}\) are exponential distributed and followed by Rayleigh fading with means \(\mu_{1} = {\mathbb{E}}\left\{ {\left| {h_{1} } \right|^{2} } \right\}\), \(\mu_{2} = {\mathbb{E}}\left\{ {\left| {h_{2} } \right|^{2} } \right\}\) and \(\mu_{R} = {\mathbb{E}}\left\{ {\left| {h_{R} } \right|^{2} } \right\}\) respectively. The joint probability density function (pdf) of \(x\), \(y\), and \(z\) is defined in [42] as \(f_{XYZ} \left( {x, y, z} \right) = \frac{1}{{\mu_{1} \mu_{2} \mu_{R} }}e^{{ - \left( {\frac{x}{{\mu_{1} }} + \frac{y}{{\mu_{2} }} + \frac{z}{{\mu_{R} }}} \right)}}\). Therefore, the ergodic capacity from u-to-H is expressed as

$$C_{E,uH}^{PS} = \frac{1}{2}\iiint {\log_{2} \left( {1 + \gamma_{uH}^{PS} \left( {x,y,z} \right)} \right)}f_{XYZ} \left( {x,y,z} \right)dxdydz$$
(58)

Substituting (17) and \(f_{XYZ} \left( {x, y, z} \right)\) in (58), we can write ergodic capacity from u-to-H as

$$\begin{aligned} & C_{E,uH}^{PS} = \frac{1}{{2\mu_{1} \mu_{2} \mu_{R} \ln 2}}\iint {\left\{ {\int\limits_{0}^{\infty } {\ln \left[ {1 + \frac{{A\left( {x,z} \right)y^{2} }}{{B\left( {x,z} \right) + b_{4} xy^{2} }}} \right]e^{{ - \frac{y}{{\mu_{2} }}}} dy} } \right\}e^{{ - \frac{x}{{\mu_{1} }}}} e^{{ - \frac{z}{{\mu_{R} }}}} dxdz} \\ & A\left( {x,z} \right) = \frac{{b_{1} x^{3} }}{{1 - b_{2} z}}\;{\text{and}}\;B\left( {x,z} \right) = b_{3} x^{2} + b_{5} \left( {1 - b_{2} z} \right) \\ \end{aligned}$$
(59)

Note that the set of value, \(\left\{ {b_{1} , b_{2} , b_{3} , b_{4} , b_{5} } \right\}\) has been written in (23). We lookup table [43, 3.354.2] and then evaluate ergodic capacity from u-to-H as (22). Thus, this completes the proof of Theorem 2.

Proof of Lemma 1

We assume that the channel gain from H-to-R, \(\left| {h_{1} } \right|^{2}\) and residual self-interference channel gain, \(\left| {h_{R} } \right|^{2}\) are stationary and channel gain from u-to-R, \(\left| {h_{2} } \right|^{2}\) is exponentially distributed and followed by Rayleigh fading. The pdf of function of y defines as, \(f_{Y} \left( y \right) = \frac{1}{{\mu_{2} }}e^{{ - \left( {\frac{y}{{\mu_{2} }}} \right)}}\). Thereby, the ergodic capacity from u-to-H is given by

$$C_{E,uH}^{PS} = \frac{1}{2}\int\limits_{0}^{\infty } {\log_{2} \left( {1 + \gamma_{uH}^{PS} \left( y \right)} \right)} f_{Y} \left( y \right)dy$$
(60)

With the help of table in [42, 3.354.2] and (17), we evaluate the ergodic capacity from u-to-H as (24). Thereby, the proof of Lemma 1 is completed.

Appendix 3

3.1 Proof of Theorem 3

In this appendix, we evaluate the closed-form expression of TS ratio for FD-based EH in two-way AF relaying.

Proof of Theorem 3

Substituting (40) into (42), we can express the end-to-end channel capacity for TS protocol as

$$C_{uH}^{TS} = \frac{1}{2}\left( {1 - \delta } \right)\log_{2} \left[ {1 + \frac{{{{\left( {1 + \delta } \right)} \mathord{\left/ {\vphantom {{\left( {1 + \delta } \right)} {\left( {1 - \delta } \right)}}} \right. \kern-0pt} {\left( {1 - \delta } \right)}}}}{{f_{1} \left\{ {f_{2} + f_{3} \frac{1 - \delta }{1 + \delta }} \right\}}}} \right]$$
(61)

Note that the ratio, \(\frac{{f_{3} }}{{f_{2} }} \propto \frac{1}{{P_{H} }}\). We assume that the \(P_{H} \gg P_{u}^{TS}\). Therefore, \(f_{3} \approx 0\). The (61) can be rewritten as

$$C_{uH}^{TS} \left( \delta \right) = \frac{1}{2}\left( {1 - \delta } \right)\log_{2} \left[ {1 + \frac{{\left( {1 + \delta } \right)}}{{f_{0} \left( {1 - \delta } \right)}}} \right]$$
(62)

where \(f_{0} = f_{1} f_{2}\). We follow steps to compute the TS ratio which is given below.


Step 1: We derivate (62) with respect to \(\delta\) and it can be written as

$$\frac{{\delta C_{uH}^{TS} \left( \delta \right)}}{\delta \delta } = \frac{1}{2\ln 2}\left[ {\frac{2}{{f_{0} \left( {1 - \delta } \right) + \left( {1 + \delta } \right)}} - \log_{2} \left\{ {1 + \frac{{\left( {1 + \delta } \right)}}{{f_{0} \left( {1 - \delta } \right)}}} \right\}} \right]$$
(63)

Step 2: We set derivative in (63) to be zero. We get

$$pe^{p} = \varepsilon$$
(64)

where \(\varepsilon = \left( {\frac{1}{{f_{0} }} - 1} \right)e^{ - 1}\) and \(p = \frac{{\left( {1 - \delta } \right)\left( {1 - f_{0} } \right)}}{{f_{0} \left( {1 - \delta } \right) + \left( {1 + \delta } \right)}}\).Thus, we obtain TS ratio as (43).


Step 3: The second derivative of (62) can be expressed as

$$\frac{{\partial^{2} C_{uH}^{TS} \left( \delta \right)}}{{\partial \delta^{2} }} = \frac{ - 2}{{\left( {1 - \delta } \right)\left[ {f_{0} \left( {1 - \delta } \right) + \left( {1 + \delta } \right)} \right]^{2} \ln 2}}$$
(65)

From (65), it is clear that the \(\frac{{\partial^{2} C_{uH}^{TS} \left( \delta \right)}}{{\partial \delta^{2} }} \le 0\) with \(\delta \in \left[ {0, 1} \right]\). Thus, the end-to-end capacity from u-to-H for TS protocol is maximum at \(\delta\) that is given in (43). The proof of Theorem 3 is completed.

Appendix 4

4.1 Proof of Theorem 4 and Lemma 2

In this appendix, we investigate the end-to-end ergodic capacity from u-to-H for TS protocol.

Proof of Theorem 4

Similar to “Appendix 2”, we considered gains, \(\left\{ {x, y, z} \right\}\) and joint pdf. The end-to-end ergodic capacity from u-to-H with TS protocol for Rayleigh fading is expressed as

$$C_{E,uH}^{TS} = \frac{{\left( {1 - \delta } \right)}}{2}\iiint {\log_{2} \left( {1 + \gamma_{uH}^{TS} \left( {x,y,z} \right)} \right)}f_{XYZ} \left( {x,y,z} \right)dxdydz$$
(66)

By substituting (40) in (66), we can write as

$$\begin{aligned} & C_{E,uH}^{TS} = \frac{{\left( {1 - \delta } \right)}}{{2\mu_{1} \mu_{2} \mu_{R} \ln 2}}\iint {\left\{ {\int\limits_{0}^{\infty } {\ln \left[ {1 + \frac{{B_{0} \left( {x,z} \right)y^{2} }}{{B_{1} \left( {x,z} \right) + k_{2} xy^{2} }}} \right]e^{{ - \frac{y}{{\mu_{2} }}}} dy} } \right\}e^{{ - \frac{x}{{\mu_{1} }}}} e^{{ - \frac{z}{{\mu_{R} }}}} dxdz} \\ & B_{0} \left( {x,z} \right) = \frac{{k_{0} x^{3} }}{1 - \xi z}\;{\text{and}}\;B_{1} \left( {x,z} \right) = k_{1} x^{2} + k_{3} \left( {1 - \xi z} \right) \\ \end{aligned}$$
(67)

The set of value, \(\left\{ {k_{0} , k_{1} , k_{2} , k_{3} } \right\}\) has been given in (46). We see [42, 3.354.2] and then compute ergodic capacity from u-to-H as (45). Thereby, the proof of Theorem 4 is completed.

Proof of Lemma 2

For TS protocol, we follow same condition as Lemma 1 and then we obtain end-to-end channel capacity from u-to-H can be written as

$$C_{E,uH}^{TS} = \frac{{\left( {1 - \delta } \right)}}{2}\int\limits_{0}^{\infty } {\log_{2} \left( {1 + \gamma_{uH}^{TS} \left( y \right)} \right)} f_{Y} \left( y \right)dy$$
(68)

With the help of table in [42, 3.354.2] and (40), we evaluate the ergodic capacity from u-to-H for TS protocol as (47). Thus, this completes the proof of Lemma 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Hossain, A. Full-duplex wireless information and power transfer in two-way relaying networks with self-energy recycling. Wireless Netw 26, 6139–6154 (2020). https://doi.org/10.1007/s11276-020-02432-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02432-x

Keywords

Navigation