Skip to main content

Advertisement

Log in

Construction of an indoor radio environment map using gradient boosting decision tree

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Radio environment maps represent a signal strength map or a coverage area of radio networks. Constructing such maps involves gathering signal coverage information in sparse locations, which can be conventionally performed by measurement methods such as the manual drive test. Nevertheless, as this process is large-scale, time-consuming, and costly, several methods for minimization of drive tests have been introduced. Machine learning is commonly used in solving regression or classification problems; in several studies, its performance even surpassed human abilities. In this study, we applied the gradient boosting algorithm to construct radio environment maps from sparse data gathered by user equipments. XGBoost and light gradient boosting machine were experimentally evaluated in constructing base station coverage, reference signal received power, reference signal received quality, and signal-to-noise ratio heatmaps, under various configuration settings. Results validated the superior performance of the two approaches against existing baseline methods k-nearest neighbor and support vector machine. Furthermore, we also assessed our model’s ability to construct radio environment maps based on unseen configuration settings, which confirmed reliable results even if they were trained using completely different sets of configuration settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA). (June 2018). Radio measurement collection for minimization of drive tests (MDT). Overall description; Stage 2, 3GPP TS 37.320, Vol. V15.0.0.

  2. Agostinelli, F., McAleer, S., Shmakov, A., & Baldi, P. (2019). Solving the Rubik’s cube with deep reinforcement learning and search. Nature Machine Intelligence, 1, 07.

    Article  Google Scholar 

  3. Viglialoro, R., Esposito, N., Condino, S., Cutolo, F., Guadagni, S., GesiGesi, M., et al. (2018). Augmented reality to improve surgical simulation. Lessons learned towards the design of a hybrid laparoscopic simulator for cholecystectomy. IEEE Transactions on Biomedical Engineering, 66, 1.

    Google Scholar 

  4. Fu, B., Liu, P., Lin, J., Deng, L., Hu, K., & Zheng, H. (2018). Predicting invasive disease-free survival for early-stage breast cancer patients using follow-up clinical data. IEEE Transactions on Biomedical Engineering, 66, 1.

    Google Scholar 

  5. Siddique, T., Barua, D., Ferdous, Z., & Chakrabarty, A. (2017). Automated farming prediction. In 2017 Intelligent systems conference (IntelliSys) (pp. 757–763).

  6. Shakoor, M. T., Rahman, K., Rayta, S. N., & Chakrabarty, A. (July 2017). Agricultural production output prediction using supervised machine learning techniques. In 2017 1st international conference on next generation computing applications (NextComp) (pp. 182–187).

  7. Chen, A., Jesus, R., & Villarigues, M. (2019). Using deep learning techniques for authentication of Amadeo de Souza Cardoso paintings and drawings. In P. Moura Oliveira, P. Novais, & L. P. Reis (Eds.), Progress in artificial intelligence (pp. 172–183). Cham: Springer.

    Chapter  Google Scholar 

  8. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning (pp. 4278–4284). London: AAAI Press.

    Google Scholar 

  9. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354–359.

    Article  Google Scholar 

  10. Putra, T. A., & Leu, J. (2019). Multilevel neural network for reducing expected inference time. IEEE Access, 7, 1.

    Article  Google Scholar 

  11. Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

    Article  MathSciNet  Google Scholar 

  12. Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGBoost. IEEE Access, 6, 21020–21031.

    Article  Google Scholar 

  13. Rich, A., Popp, P. O., Halpern, D., Rothe, A., & Gureckis, T. M. (2018). Modeling second-language learning from a psychological perspective. In BEA@NAACL-HLT.

  14. Zhu, L. (2018). A hybrid approach for music recommendation. WSDM Cup 2018, Los Angeles, USA.

  15. Schütz, N., Leichtle, A. B., & Riesen, K. (2018). A comparative study of pattern recognition algorithms for predicting the inpatient mortality risk using routine laboratory measurements. Artificial Intelligence Review, 52, 1–15.

    Google Scholar 

  16. Li, Y., Kang, K., Krahn, J. M., Croutwater, N., Lee, K., Umbach, D. M., & Li, L. (2017). A comprehensive genomic pan-cancer classification using the cancer genome atlas gene expression data. In BMC genomics

  17. AlHajri, M. I., Ali, N. T., & Shubair, R. M. (2019). Indoor localization for iot using adaptive feature selection: A cascaded machine learning approach. IEEE Antennas and Wireless Propagation Letters, 18(11), 2306–2310.

    Article  Google Scholar 

  18. AlHajri, M. I., Ali, N. T., & Shubair, R. M. (2018). Classification of indoor environments for iot applications: A machine learning approach. IEEE Antennas and Wireless Propagation Letters, 17(12), 2164–2168.

    Article  Google Scholar 

  19. Pesko, M., Javornik, T., Kosir, A., Stular, M., & Mohorcic, M. (2014). Radio environment maps: The survey of construction methods. TIIS, 8, 3789–3809.

    Google Scholar 

  20. Suchanski, M., Kaniewski, P., Romanik, J., Golan, E., & Zubel, K. (May 2019). Radio environment maps for military cognitive networks: Deployment of sensors vs. map quality. In 2019 international conference on military communications and information systems (ICMCIS) (pp. 1–6).

  21. Sato, K., Inage, K., & Fujii, T. (2019). On the performance of neural network residual kriging in radio environment mapping. IEEE Access, 7, 94557–94568.

    Article  Google Scholar 

  22. Yilmaz, H. B., & Tugcu, T. (2015). Location estimation-based radio environment map construction in fading channels. Wireless Communications and Mobile Computing, 15(3), 561–570. https://doi.org/10.1002/wcm.2367.

    Article  Google Scholar 

  23. Sun, G., & van de Beek, J. (2010). Simple distributed interference source localization for radio environment mapping. In IFIP wireless days (pp. 1–5).

  24. Pesko, M., Javornik, T., Vidmar, L., Košir, A., Štular, M., & Mohorčič, M. (2015). The indirect self-tuning method for constructing radio environment map using omnidirectional or directional transmitter antenna. EURASIP Journal on Wireless Communications and Networking, 2015(1), 50. https://doi.org/10.1186/s13638-015-0297-2.

    Article  Google Scholar 

  25. Alfattani, S., & Yonzacoglu, A. (2018). Indirect methods for constructing radio environment map. In 2018 IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–5) Quebec City, QC. https://doi.org/10.1109/CCECE.2018.8447654.

  26. Bolea, L., Pérez-Romero, J., & Agustí, R. (2011). Received signal interpolation for context discovery in cognitive radio. In 2011 the 14th international symposium on wireless personal multimedia communications (WPMC) (pp. 1–5).

  27. Isselmou, Y. O., Wackernagel, H., Tabbara, W., & Wiart, J. (November 2006). Geostatistical interpolation for mapping radio-electric exposure levels. In 2006 1st European conference on antennas and propagation (pp. 1–6).

  28. Sohrabi, F., & Kuehn, E. (May 2017). Construction of the RSRP map using sparse MDT measurements by regression clustering. In 2017 IEEE international conference on communications (ICC) (pp. 1–6).

  29. Moysen, J., Giupponi, L., Baldo, N., & Mangues-Bafalluy, J. (2015). Predicting qos in LTE hetnets based on location-independent UE measurements. In CAMAD (pp. 124–128). New York: IEEE.

  30. Yilmaz, H. B. (2012). Cooperative spectrum sensing and radio environment map construction in cognitive radio networks. Ph.D. dissertation.

  31. Denkovski, D., Atanasovski, V., Gavrilovska, L., Riihijärvi, J., & Mähönen, P. (2012). Reliability of a radio environment map: Case of spatial interpolation techniques. In 2012 7th international icst conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 248–253). Stockholm. https://doi.org/10.4108/icst.crowncom.2012.248452.

  32. Li, J., Ding, G., Zhang, X., & Wu, Q. (2018). Recent advances in radio environment map: A survey. In X. Gu, G. Liu, & B. Li (Eds.), Machine learning and intelligent communications (pp. 247–257). Cham: Springer.

    Chapter  Google Scholar 

  33. Baldini, G., & Geneiatakis, D. (April 2019). A performance evaluation on distance measures in KNN for mobile malware detection. In 2019 6th international conference on control, decision and information technologies (CoDIT) (pp. 193–198).

  34. Wang, B., Gan, X., Liu, X., Yu, B., Jia, R., Huang, L., et al. (2020). A novel weighted KNN algorithm based on RSS similarity and position distance for wi-fi fingerprint positioning. IEEE Access, 8, 30591–30602.

    Article  Google Scholar 

  35. Gou, J., Du, L., Zhang, Y., & Xiong, T. (2011). A new distance-weighted k-nearest neighbor classifier. Journal of Information and Computing Science, 9, 11.

    Google Scholar 

  36. Mawengkang, H., & Nababan, E. (2019). Gini index with local mean based for determining k value in k-nearest neighbor classification. Journal of Physics: Conference Series, 1235, 012006.

    Google Scholar 

  37. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In Proceedings of the 25th international conference on neural information processing systems—Volume 2, Ser. NIPS’12 (pp. 2951–2959). New York: Curran Associates Inc. (Online). http://dl.acm.org/citation.cfm?id=2999325.2999464.

  38. Boiman, O., Shechtman, E., & Irani, M. (June 2008). In defense of nearest-neighbor based image classification. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8).

  39. Wang, Y., & Ren, J. (2019). Application of KNN algorithm based on particle swarm optimization in fire image segmentation. Journal of Electrical Engineering and Technology, 14, 1707–1715.

    Article  Google Scholar 

  40. Lin, Y., Jiang, J., & Lee, S. (2014). A similarity measure for text classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 26(7), 1575–1590.

    Article  Google Scholar 

  41. Chen, Z., Guo, W. (2020). KNN-based pseudo-supervised RCNN framework for text clustering. In Y. Liu, L. Wang, L. Zhao, & Z. Yu (Eds.), Advances in natural computation, fuzzy systems and knowledge discovery. ICNC-FSKD 2019. Advances in intelligent systems and computing (Vol. 1075). Cham: Springer.

  42. Moore, P. (July 2015). EEG-based biometric identification using local probability centers. In 2015 international joint conference on neural networks (IJCNN) (pp. 1–8).

  43. Thakur, S. S., Srivastava, R. (2020). Dual RSA Based secure biometric system for finger vein recognition. In S. Smys, R. Bestak, Á. Rocha (Eds.), Inventive computation technologies. ICICIT 2019. Lecture notes in networks and systems (Vol. 98). Cham: Springer.

  44. Hearst, M. A. (1998). Support vector machines. IEEE Intelligent Systems, 13(4), 18–28. https://doi.org/10.1109/5254.708428.

    Article  Google Scholar 

  45. Mangasarian, O. L., & Musicant, D. R. (2001). Lagrangian support vector machines. Journal of Machine Learning Research, 1, 161–177. https://doi.org/10.1162/15324430152748218.

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, Q., Chen, C., Zhang, Y., & Hu, Z. (2011). Feature selection for support vector machines with RBF kernel. Artificial Intelligence Review, 36(2), 99–115. https://doi.org/10.1007/s10462-011-9205-2.

    Article  Google Scholar 

  47. Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 2000.

    MathSciNet  MATH  Google Scholar 

  48. Chanama, L., & Wongwirat, O. (January 2018). A comparison of decision tree based techniques for indoor positioning system. In 2018 international conference on information networking (ICOIN) (pp. 732–737).

  49. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, ser. KDD’16 (pp. 785–794). New York, NY: ACM (Online). https://doi.org/10.1145/2939672.2939785.

  50. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 30, pp. 3146–3154). New York: Curran Associates Inc.

    Google Scholar 

  51. Athanasiadou, G. E., Batistatos, M. C., Zarbouti, D. A., & Tsoulos, G. V. (2019). Lte ground-to-air field measurements in the context of flying relays. IEEE Wireless Communications, 26(1), 12–17.

    Article  Google Scholar 

  52. Wirges, J., & Dettmar, U. (November 2019). Performance of TCP and UDP over narrowband internet of things (NB-IOT). In 2019 IEEE international conference on internet of things and intelligence system (IoTaIS) (pp. 5–11).

Download references

Acknowledgements

The authors gratefully acknowledge the support extended by the Taiwan Tech-Tokyo Tech Joint Research Program, under Grant TIT-NTUST-107-05 and the Ministry of Science and Technology, Taiwan, under grant MOST- MOST-108-2218-E-011-029-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenq-Shiou Leu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 32239 KB)

Supplementary material 2 (pdf 185 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufaida, S.I., Leu, JS., Su, KW. et al. Construction of an indoor radio environment map using gradient boosting decision tree. Wireless Netw 26, 6215–6236 (2020). https://doi.org/10.1007/s11276-020-02428-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02428-7

Keywords

Navigation