Skip to main content

Advertisement

Log in

Artificial neural network design for improved spectrum sensing in cognitive radio

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Dynamic Spectrum Access/Cognitive Radio systems access the channel in an opportunistic, non-interfering manner with the primary network. These systems utilize spectrum sensing techniques to sense the occupancy of the primary user. In this paper, an artificial neural network based hybrid spectrum sensing technique is proposed, which considers sensing as a binary classification problem to detect whether the primary user is idle or busy. The proposed scheme utilizes energy detection and likelihood ratio test statistic as features to train the neural network. Moreover, we demonstrate the impact of hyperparameter tuning and carry out the detailed study of it, yielding a combination of best-suited hyperparameters. The performance of the proposed sensing scheme is validated on primary signals of various real world radio technologies acquired with an empirical testbed setup. We conclude that the best performing configuration results in an increase of approximately 63% in detection performance compared to classical energy detection and improved energy detection sensing schemes when averaged over all the radio technologies considered in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lundén, J., Koivunen, V., & Poor, H. V. (2015). Spectrum exploration and exploitation for cognitive radio: Recent advances. IEEE Signal Processing Magazine, 32(3), 123–140.

    Article  Google Scholar 

  2. Cardenas-Juarez, M., Diaz-Ibarra, M. A., Pineda-Rico, U., Arce, A., & Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 \({{\rm GH}}\)z \({{\rm ISM}}\) band for cognitive radio applications. in Proceedings of CONIELECOMP, pp. 25–31.

  3. Eze, J., Zhang, S., Liu, E. & Eze, E. (2017). Cognitive radio technology assisted vehicular ad-hoc networks (vanets): Current status, challenges, and research trends. In 2017 23rd International conference on automation and computing (ICAC), pp. 1–6.

  4. Liang, Y. C., Chen, K. C., Li, G. Y., & Mähönen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  5. Chen, Y., & Oh, H. S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848–859.

    Article  Google Scholar 

  6. Isha, A. M., & Bakshi, A. (2015). Spectrum sensing techniques in cognitive radio based sensor networks: A survey. International Journal of Applied Enginerring Research, 10(8), 19:063–19:076.

    Google Scholar 

  7. Bkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 1136–1159. Third.

    Article  Google Scholar 

  8. Abbas, N., Nasser, Y., & El Ahmad, K. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 174.

    Article  Google Scholar 

  9. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  10. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.

    Article  Google Scholar 

  11. Gajera, B., Patel, D. K., Soni, B., & López-Benítez, M. (2019). Performance evaluation of improved energy detection under signal and noise uncertainties in cognitive radio networks. In Proceedings of IEEE ICSigSys, pp. 131–137.

  12. Gaiera, B., Patel, D. K., Soni, B., López-Benítez, M. (2019). Experimental performance evaluation of improved energy detection under noise uncertainty in low \({{\rm SNR}}\) regime. In Proceedings of IEEE WCNCW.

  13. Wang, H., Yang, E. H., Zhao, Z., & Zhang, W. (2009). Spectrum sensing in cognitive radio using goodness of fit testing. IEEE Transactions on Wireless Communications, 8(11), 5427–5430.

    Article  Google Scholar 

  14. Rostami, S., Arshad, K., & Moessner, K. (2012). Order-statistic based spectrum sensing for cognitive radio. IEEE Communications Letters, 16(5), 592–595.

    Article  Google Scholar 

  15. Zhang, G., Wang, X., Liang, Y.-C., & Liu, J. (2010). Fast and robust spectrum sensing via Kolmogorov–Smirnov test. IEEE Transactions on Communications, 58(12), 3410–3416.

    Article  Google Scholar 

  16. Arshad, K., & Moessner, K. (2013). Robust spectrum sensing based on statistical tests. IET Communications, 7(9), 808–817.

    Article  Google Scholar 

  17. Teguig, D., Nir, V. L., & Scheers, B. (2015). Spectrum sensing method based on likelihood ratio goodness-of-fit test. IET Electronics Letters, 51(3), 253–255.

    Article  Google Scholar 

  18. Patel, D. K., & Trivedi, Y. N. (2016). LRS-\(G{^2}\) based non-parametric spectrum sensing for cognitive radio. In Proceedings of CROWNCOM, pp. 330–341.

  19. Patel, D. K., Soni, B., & Lopez-Benitez, M. (2019). Improved likelihood ratio statistic-based cooperative spectrum sensing for cognitive radio. IET Communications, 14(11), 1675–1686.

    Article  Google Scholar 

  20. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., & Hanzo, L. (2017). Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105.

    Article  Google Scholar 

  21. Tian, J., Pei, Y., Huang, Y., & Liang, Y. (2018). Modulation-constrained clustering approach to blind modulation classification for mimo systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 894–907.

    Article  Google Scholar 

  22. O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.

    Article  Google Scholar 

  23. Dörner, S., Cammerer, S., Hoydis, J., & Brink, St. (2018). Deep learning based communication over the air. IEEE Journal of Selected Topics in Signal Processing, 12(1), 132–143.

    Article  Google Scholar 

  24. Wang, J., Jiang, C., Zhang, H., Ren, Y., Chen, K., Hanzo, L. (2020). Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Communications Surveys and Tutorials, pp. 1–1.

  25. Cheng, P., Chen, Z., Ding, M., Li, Y., Vucetic, B., & Niyato, D. (2020). Spectrum intelligent radio: Technology, development, and future trends. IEEE Communications Magazine, 58(1), 12–18.

    Article  Google Scholar 

  26. Agarwal, A., Dubey, S., Khan, M. A., Gangopadhyay, R., & Debnath, S. (2016). Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access. In Proceedings of SPCOM, pp. 1–5.

  27. Clancy, C., Hecker, J., Stuntebeck, E., & O’Shea, T. (2007). Applications of machine learning to cognitive radio networks. IEEE Wireless Communications, 14(4), 47–52.

    Article  Google Scholar 

  28. Azmat, F., Chen, Y., & Stocks, N. (2016). Analysis of spectrum occupancy using machine learning algorithms. IEEE Transactions on Vehicular Technology, 65(9), 6853–6860.

    Article  Google Scholar 

  29. Zheng, S., Chen, S., Qi, P., Zhou, H., & Yang, X. (2020). Spectrum sensing based on deep learning classification for cognitive radios. China Communications, 17(2), 138–148.

    Article  Google Scholar 

  30. Zhang, & D., Zhai, X. (2011). \({{\rm SVM}}\)-based spectrum sensing in cognitive radio. In International conference wireless communications networking mobile computing, pp. 1–4.

  31. Panchal, M., Patel, D., Chaudhary, S. (2017). Spectrum occupancy classification using SVM-radial basis function. In Proceedings of CROWNCOM. Berlin: Springer, pp. 112–127.

  32. Tian, J., Cheng, P., Chen, Z., Li, M., Hu, H., Li, Y., et al. (2019). A machine learning-enabled spectrum sensing method for \({{\rm OFDM}}\) systems. IEEE Transactions on Vehicular Technology, 68(11), 11 374–11 378.

    Google Scholar 

  33. Wang, D., & Yang, Z. (2016). An novel spectrum sensing scheme combined with machine learning. In Proceedings of CISP-BMEI, pp. 1293–1297.

  34. Clancy, T. C., Khawar, A., & Newman, T. R. (2011). Robust signal classification using unsupervised learning. IEEE Transactions on Wireless Communications, 10(4), 1289–1299.

    Article  Google Scholar 

  35. Kumar, V., Kandpal, D. C., Jain, M., Gangopadhyay, R., Debnath, S. (2016) K-mean clustering based cooperative spectrum sensing in generalized \(\kappa -\mu \) fading channels. In Proceedings of IEEE NCC, pp. 1–5.

  36. Mikaeil, A. M., Guo, B., & Wang, Z. (2014). Machine learning to data fusion approach for cooperative spectrum sensing. In Proceedings of cyber-enabled distributed computing and knowledge discovery, pp. 429–434.

  37. Tang, Y.-J., Zhang, Q.-Y., & Lin, W. (2010). Artificial neural network based spectrum sensing method for cognitive radio. In Proceedings of IEEE WiCOM, pp. 1–4.

  38. Vyas, M. R., Patel, D. K., López-Benítez, M. (2017). Artificial neural network based hybrid spectrum sensing scheme for cognitive radio. In Proceedings of PIMRC, pp. 1–7.

  39. Zhang, Y., Hou, J., Towhidlou, V., & Shikh-Bahaei, M. R. (2019). A neural network prediction-based adaptive mode selection scheme in full-duplex cognitive networks. IEEE Transactions on Cognitive Communications and Networking, 5(3), 540–553.

    Article  Google Scholar 

  40. Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors, 19(1), 126.

    Article  Google Scholar 

  41. Liu, C., Wang, J., Liua, X., & Liang, Y. (2019). Deep CM-CNN for spectrum sensing in cognitive radio. IEEE Journal on Selected Areas in Communications, pp. 1–1.

  42. Liu, C., Liu, X., Liang, Y. (2019). Deep \({{\rm CNN}}\) for spectrum sensing in cognitive radio. In Proceedings of IEEE ICC, pp. 1–6.

  43. Xie, J., Liu, C., Liang, Y., & Fang, J. (2019). Activity pattern aware spectrum sensing: A \({{\rm CNN}}\)-based deep learning approach. IEEE Communications Letters, 23(6), 1025–1028.

    Google Scholar 

  44. Lee, W., Kim, M., & Cho, D. (2019). Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks. IEEE Transactions on Vehicular Technology, 68(3), 3005–3009.

    Article  Google Scholar 

  45. Cheng, Q., Shi, Z., Nguyen, D.N., & Dutkiewicz, E. (2019). Sensing \({{\rm OFDM}}\) signal: A deep learning approach. IEEE Transactions on Communication, pp. 1–1.

  46. Xie, J., Fang, J., Liu, C., Yang, L. (2020). Unsupervised deep spectrum sensing: A variational auto-encoder based approach. IEEE Transactions on VehicularTechnology, pp. 1–1.

  47. Yu, L., Chen, J., Ding, G., Tu, Y., Yang, J., & Sun, J. (2018). Spectrum prediction based on \({{\rm T}}\)aguchi method in deep learning with long short-term memory. IEEE Access, 6, 45923–45933.

    Google Scholar 

  48. Balwani, N., Patel, D. K., Soni, B., & López-Benítez, M. (2019). Long short-term memory based spectrum sensing scheme for cognitive radio. In Proceedings of IEEE PIMRC, pp. 1–6.

  49. Soni, B., Patel, D. K., & López-Benítez, M. (2020). Long short-term memory based spectrum sensing scheme for cognitive radio using primary activity statistics. IEEE Access, 8, 97437–97451.

    Article  Google Scholar 

  50. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  51. Shindjalova, R., Prodanova, K., & Svechtarov, V. (2014). Modeling data for tilted implants in grafted with bio-oss maxillary sinuses using logistic regression. In AIP Conference Proceedings, vol. 1631, American Institute of Physics, pp. 58–62.

  52. Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In International Conference on Machine Learning, pp. 1139–1147.

  53. Schapire, R. E. (1999). A brief introduction to boosting. In International JointConference on Artificial Intelligence, vol. 99, pp. 1401–1406.

  54. López-Benítez, M., & Casadevall, F. (2012). Improved energy detection spectrum sensing for cognitive radio. IET Communications, 6(8), 785–796.

    Article  MathSciNet  MATH  Google Scholar 

  55. Patel, D. K., Soni, B., & López-Benítez, M. (2019). On the estimation of primary user activity statistics for long and short time scale models in cognitive radio. Wireless Networks, 25(8), 5099–5111.

    Article  Google Scholar 

  56. López-Benítez, M., Casadevall, F., Martella, C. (2010). Performance of spectrum sensing for cognitive radio based on field measurements of various radio technologies. In European wireless conference.

  57. LLC, E. R., Universal software radio peripheral (USRP). Available: http://www.ettus.com.

  58. Blossom, E. (2004). GNU radio: Tools for exploring the radio frequency spectrum. Linux Journal, 2004(122), 4.

    Google Scholar 

  59. Wellens, M., & Mähönen, P. (2010). Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model. Mobile Networks and Applications, 15(3), 461–474.

    Article  Google Scholar 

  60. Febrianto, T., Hou, J., & Shikh-Bahaei, M. (2017). Cooperative full-duplex physical and mac layer design in asynchronous cognitive networks. In Wireless communications and mobile computing, vol. 2017.

Download references

Acknowledgements

Results in parts were published in proceedings of IEEE PIMRC conference, held in September 2017 at Montreal, Canada [38]. The authors would like to thank financial support received from UKIERI under the DST Thematic Partnership 2016-17 (ref. DST/INT/UK/P-150/2016). The authors also thank Ahmedabad University and University of Liverpool for infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Soni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.K., López-Benítez, M., Soni, B. et al. Artificial neural network design for improved spectrum sensing in cognitive radio. Wireless Netw 26, 6155–6174 (2020). https://doi.org/10.1007/s11276-020-02423-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02423-y

Keywords

Navigation