Skip to main content
Log in

Spectrum harvesting for heterogeneous wireless networks integration

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Massive capacity demand is a major impetus behind the advances, in various ways, of today and near future wireless communication networks. To face this challenge, more wireless spectrum is needed, efficient usage of this spectrum is necessary, and adequate architectures are required. In this paper, we present a conceptual solution based on a cognitive-radio-inspired cellular network, for integrating idle spectrum resources of different wireless networks into a single mobile heterogeneous wireless network. We describe the conceptual architecture of this integrating network, referred to as Integrating cognitive-radio-inspired cellular network (I-CRICNet), and present a cooperative spectrum-harvesting scheme that keeps the former supplied with spectrum resources. In the latter scheme, we make extensive use of cross-correlated sequences (CSSs), for events signaling purposes. This choice is motived by the particularly interesting characteristics of the CSSs, namely, duration shortness, robustness to bad radio conditions, detection rather than decoding, and low probability of collision. As an illustration, we propose a reporting and detection scheme, in the context of OFDMA systems, and provide performance results from simulations to validate our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang, N., Zhou, H., Zheng, K., Cheng, N., Mark, J. W., & Shen, X. (2015). Cooperative heterogeneous framework for spectrum harvesting in cognitive cellular network. IEEE Communications Magazine,53, 60–67.

    Article  Google Scholar 

  2. Matinmikko, M., Okkonen, H., Palola, M., Yrjola, S., Ahokangas, P., & Mustonen, M. (2014). Spectrum sharing using licensed shared access: The concept and its workflow for LTE-advanced networks. IEEE Wireless Communications,21, 72–79.

    Article  Google Scholar 

  3. Mitola, J. (2001). Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications,6, 435–441.

    Article  Google Scholar 

  4. Beck, M.T., Werner, M., Feld, S., and Schimper, T. (2014). Mobile edge computing: A taxonomy. In Proceedings of the sixth international conference on advances in future internet (AFIN 2014), pp. 48–54.

  5. Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Wireless Communications,52, 82–89.

    Google Scholar 

  6. Soret, B., Pedersen, K. I., Jorgensen, N. T. K., & Fernandez-Lopez, V. (2015). Interference coordination for dense wireless networks. IEEE Communications Magazine,53, 102–108.

    Article  Google Scholar 

  7. Ghosh, A., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine,50, 54–64.

    Article  Google Scholar 

  8. Yang, C., Li, J., Guizani, M., Anpalagan, A., & Elkashlan, M. (2016). Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications,23, 94–101.

    Article  Google Scholar 

  9. Andreev, S., Gerasimenko, M., Galinina, O., Koucheryavy, Y., Himayat, N., Yeh, S. P., et al. (2014). Intelligent access network selection in converged multi-radio heterogeneous networks. IEEE Wireless Magazines,21, 86–96.

    Article  Google Scholar 

  10. Yap, K.K., Huang, T.Y., Kobayashi, M., Yiakoumis Y., McKeown, N., Katti, S., and Parulkar, G. (2012). Making use of all the networks around us: A case study in android. In Proceedings ACM SIGCOMM CellNet workshop

  11. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications,6, 13–18.

    Article  Google Scholar 

  12. Tehrani, R. H., Vahid, S., Triantafyllopoulou, D., Lee, H., & Moessner, K. (2016). Licensed spectrum sharing schemes for mobile operators: A survey and outlook. IEEE Communications Surveys and Tutorials,18, 1–33.

    Article  Google Scholar 

  13. Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications,20, 90–95.

    Article  Google Scholar 

  14. Diamantoulakis, P. D., Pappi, K. N., Muhaidat, S., Karagiannidis, G. K., & Khattab, T. (2017). Carrier aggregation for cooperative cognitive radio networks. IEEE Transactions on Vehicular Technology,66, 5904–5918.

    Article  Google Scholar 

  15. Zhang, H., Jiang, C., Mao, X., & Chen, H. H. (2017). Interference-limit resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology,65/3, 1761–1771.

    Google Scholar 

  16. Zhang, H., Nie, Y., Cheng, J., Leug, V. C. M., & Nallanathan, A. (2016). Sensing time optimization and power control for energy efficient cognitive small cell with imperfetc hybrid spectrum sensing. IEEE Transactions on Wireless Communications,16/2, 730–743.

    Google Scholar 

  17. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine,51, 136–144.

    Article  Google Scholar 

  18. Nunna, S., et al. (2015). Enabling real-time context-aware collaboration through 5g and mobile edge computing. In 12th International Conference on Information TechnologyNew Generations (ITNG), Las Vegas, NV, USA, pp. 601–605

  19. Magistretti, E., Gurewitz, O., & Knightly, E. W. (2014). 802.11 ec: Collision avoidance without control messages. IEEE Transactions on Networking,22/16, 1845–1858.

    Article  Google Scholar 

  20. Qu, D., Ding, J., Jiang, T., & Sun, X. (2011). Detection of non-contiguous OFDM symbols for cognitive radio systems without out-of-band spectrum synchronization. IEEE Transactions on Wireless Communications,10/102, 693–701.

    Article  Google Scholar 

  21. Li, L., Qu, D., Jiang, T., and Ding, J., (2012). Design of LDPC codes for non-contiguous OFDM-based communication systems. In IEEE International Conference on Communications (ICC), pp. 4712–4716.

  22. Jiang, T., Ni, C., Qu, D., & Wang, C. (2014). Energy-efficient NC-OFDM/OQAM-based cognitive radio networks. IEEE Communications Magazine,52, 54–60.

    Article  Google Scholar 

  23. Dahlman, E., Parkvall, S., & Sköld, J. (2011). 4G LTE/LTE-advanced for mobile broadband. Oxford: Elsevier.

    Google Scholar 

  24. Proakis, J. G., Salehi, M., & Bauch, G. (2004). Contemporary communication systems using MATLAB (3rd ed.). Stamford: Cengage Learning.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Gourdache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourdache, S., Bilami, A. & Barka, K. Spectrum harvesting for heterogeneous wireless networks integration. Wireless Netw 26, 431–447 (2020). https://doi.org/10.1007/s11276-018-1822-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1822-0

Keywords

Navigation