Skip to main content
Log in

Multi-virtual wireless mesh networks through multiple channels and interfaces

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The high flexibility of the wireless mesh networks (WMNs) physical infrastructure can be exploited to provide communication with different technologies and support for a variety of different services and scenarios. Context information may trigger the need to build different logical networks on top of physical networks, where users can be grouped according to similarity of their context, and can be assigned to the logical networks matching their context. When building logical networks, network virtualization can be a very useful technique allowing a flexible utilization of a physical network infrastructure. Moreover, dynamic resource management using multiple channels and interfaces, directional antennas and power control, is able to provide a higher degree of flexibility in terms of resource allocation among the available virtual networks, to enable isolated and non-interfering communications while maximizing the network efficiency. In this paper we propose a resource management approach that uses transmit power control algorithm with both omnidirectional and directional antennas, to determine the resources of each virtual network while minimizing interference between virtual networks, considering the support of multiple services and users. Each virtual network can be extended to include the nodes of the WMN required by new users. The results of the proposed approach show that the support of multiple virtual networks for multiple services highly improves the network performance when compared to the support of the services in only one virtual network, with no interference minimization nor dynamic resource control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akyildiz, I. F., & Wang, X. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23–S30.

    Article  Google Scholar 

  2. Anderson, T., Peterson, L., Shenker, S., & Turner, J. (2005). Overcoming the internet impasse through virtualization. IEEE Computer, 38(4), 34–41.

    Article  Google Scholar 

  3. Hummel, K., Hess, A., Sargento, S., Matos, R., Tutschku, K., & Meer, H. (2009). Context-based wireless mesh networks: A case for network virtualization. In Euro-NF workshop on future internet architectures.

  4. Matos, R., Sargento, S., Hummel, K. A., Hess, A., Tutschku, K., & de Meer, H. (2012). Context-based wireless mesh networks: A case for network virtualization. Telecommunication Systems, 51(4), 259–272. http://dx.doi.org/10.1007/s11235-011-9434-3.

    Article  Google Scholar 

  5. Matos, R. & Sargento, S. (2009). Context-aware connectivity and mobility in wireless mesh networks. In ICST MONAMI.

  6. Hu, P., Portmann, M., Robinson, R., & Indulska, J. (2008). Context-aware routing in wireless mesh networks. In ACM CASEMANS.

  7. Reaz, A., Ramamurthi, V., Ghosal, D., Benko, J., Li, W., Dixit, S., & Mukherjee, B. (2008). Enhancing multi-hop wireless mesh networks with a ring overlay. In IEEE SECON.

  8. GENI (2006). Technical document on wireless virtualization. http://www.geni.net/.

  9. Madwifi. http://madwifi-project.org/.

  10. Giustiniano, D., Llairo, E. G., Toledo, A. L., & Rodriguez, P. (2009). Wiswitcher: An efficient client for managing multiple aps. In P. Crowley, D. A. Maltz, & J. E. van der Merwe (Eds.), PRESTO (pp. 43–48). New York: ACM.

    Chapter  Google Scholar 

  11. Shrestha, S., Lee, J., & Chong, S. (2008). Virtualization and slicing of wireless mesh network. In Conference on future internet (CFI).

  12. Ding, G., Vicente, J., Rungta, S., Krishnaswamy, D., Chan, W., & Miao, K. (2006). Overlays on wireless mesh networks: Implementation and cross-layer searching. In A. Helmy, B. Jennings, L. Murphy, & T. Pfeifer (Eds.), Autonomic management of mobile multimedia services (Vol. 4267, pp. 171–182)., Lecture notes in computer science Berlin: Springer. https://doi.org/10.1007/1190738118.

    Chapter  Google Scholar 

  13. Quer, G., Baldo, N., & Zorzi, M. (2011). Cognitive call admission control for VOIP over IEEE 802.11 using Bayesian networks. In Global telecommunications conference (GLOBECOM 2011) (pp. 1–6). IEEE.

  14. Chen, Z., Wang, L., Zhang, F., Wang, X., & Chen, W. (2008). Voip over wlans by adapting transmitting interval and call admission control. In IEEE international conference on communications, 2008 (ICC ’08) (pp. 3242–3246).

  15. Piacentini, E., Fonseca, M., & Munaretto, A. (2008) Voip call admission control for last mile wireless mesh networks. In Wireless Days, 2008. (WD ’08), 1st IFIP (pp. 1–5).

  16. Sridhar, K., & Chan, M. C. (2006). Interference based call admission control for wireless ad hoc networks. In 3rd annual international conference on mobile and ubiquitous systems-workshops, 2006 (pp. 1–10).

  17. Ho, I.-H., & Liew, S. C. (2007). Impact of power control on Performance of IEEE 802.11 wireless networks. IEEE Transactions on Mobile Computing, 6(11), 1245–1258.

    Article  Google Scholar 

  18. Kandasamy, S., Marques, C., Calçada, T., Ricardo, M., Matos, R., & Sargento, S. (2015). Call admission control for wireless mesh network based on power interference modeling using directional antenna. Wireless Networks,. https://doi.org/10.1007/s11276-015-1096-8.

    Google Scholar 

  19. Li, Y., Wang, C., You, X., Chen, H. H., & She, W. (2012). Delay and throughput performance of IEEE 802.16 WiMax mesh networks. IET Communications, 6(1), 107–115. https://doi.org/10.1049/iet-com.2010.1031.

    Article  Google Scholar 

  20. Li, Y., Zhang, X., Zhuang, H., & You, X. (2011). An end-to-end QoS assurance method in IEEE 802.16 mesh networks. In Global telecommunications conference (GLOBECOM 2010) IEEE (pp. 1–6). http://dx.doi.org/10.1109/GLOCOM.2010.5683155

  21. Li, Y., Wei, D., Zhuang, H., Wang, H., & Wang, P. (2009). A new congestion control method for IEEE 802.16 mesh mode. In 2009 international conference on communication software and networks, Macau (pp. 726–730). http://dx.doi.org/10.1109/ICCSN.2009.118

  22. Matos, R., Marques, C., & Sargento, S. (2014). Context-aware control of user-centric virtual networks: Centralized vs distributed approaches. Elsevier Journal of Computer Networks, 74, 4–21. https://doi.org/10.1016/j.comnet.2014.06.022.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundação para a Ciência e a Tecnologia (FCT) of Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal for supporting this work through Grants PTDC/EEA-TEL/120176/2010 and SFRH/BD/43744/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanan Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, C., Kandasamy, S., Sargento, S. et al. Multi-virtual wireless mesh networks through multiple channels and interfaces. Wireless Netw 25, 2269–2284 (2019). https://doi.org/10.1007/s11276-017-1650-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1650-7

Keywords

Navigation