Skip to main content
Log in

Interference analysis for asynchrounous OFDM/FBMC based cognitive radio networks over Rayleigh fading channel

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the future fifth generation networked society, devices will suffer from the asynchronous multi-carrier effect which impacts the user’s quality of experience. This paper investigates the timing misalignment effect on interference level in the context of a cognitive radio (CR) network. Our study considers both multicarrier techniques orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC). The originality of our paper consists in proposing a simple but accurate analytical model to evaluate our system’s performance in terms of interference level, signal-to-interference-plus-noise ratio and bit error rate. Specifically, two case studies are considered, a single-user case (one primary user and one secondary user) and a multi-user case with exact theoretical expressions of interference level. We had also made a comparison between OFDM and FBMC techniques. The most striking observation to emerge from our results is that the asynchronous interference is inversely propositional to timing offset even for the multi-user case, and that differences in the normalized interference level between the single/multi-user cases is barely perceived for the FBMC technique, proving its efficiency. Our simulations’ results had further strengthened our confidence in the suggested model. It shows that FBMC is best suited for CR networks since it provides BER improvements compared to OFDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fixed and Mobile IP Network Traffic Forecast—VNI, Cisco (2016). http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html. Accessed 13 Mar 2016.

  2. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys and Tutorials, 13(4), 524–540.

    Article  Google Scholar 

  3. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.

    Article  Google Scholar 

  4. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  5. Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20, 157–160.

    Article  Google Scholar 

  6. Mahmoud, H. A., Yucek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–15.

    Article  Google Scholar 

  7. Wang, X., Tjhung, T. T., Wu, Y., & Caron, B. (2003). SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization. IEEE Transactions on Broadcasting, 49(2), 170–177.

    Article  Google Scholar 

  8. Zhang, H., Le Ruyet, D., & Terre, M. (2009). Spectral efficiency comparison between OFDM/OQAM-and OFDM-based cr networks. Wireless Communications and Mobile Computing, 9(11), 1487–1501.

    Article  Google Scholar 

  9. Ben Aissa, S., Hizem, M., & Bouallegue, R. (2016). Interference analysis of asynchronous OFDM/FBMC based cognitive radio transceivers. In 2016 30th international conference on advanced information networking and applications workshops (WAINA) (pp. 512–517). IEEE.

  10. Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.

    Article  Google Scholar 

  11. Zhang, R., Gao, F., & Liang, Y.-C. (2010). Cognitive beamforming made practical: Effective interference channel and learning-throughput tradeoff. IEEE Transactions on Communications, 58(2), 706–718.

    Article  Google Scholar 

  12. Bodinier, Q., Bader, F., & Palicot, J. (2016). Modeling interference between OFDM/OQAM and CP-OFDM: Limitations of the PSD-based model. arXiv preprint arXiv:1603.08697.

  13. Hamdi, K. A., & Shobowale, Y. M. (2009). Interference analysis in downlink ofdm considering imperfect intercell synchronization. IEEE Transactions on Vehicular Technology, 58(7), 3283–3291.

    Article  Google Scholar 

  14. Medjahdi, Y., Terre, M., Le Ruyet, D., Roviras, D., & Dziri, A. (2011). Performance analysis in the downlink of asynchronous OFDM/FBMC based multi-cellular networks. IEEE Transactions on Wireless Communications, 10(8), 2630–2639.

    Article  Google Scholar 

  15. Boulogeorgos, A.-A. A., Chatzidiamantis, N. D., & Karagiannidis, G. K. (2016). Spectrum sensing with multiple primary users over fading channels. IEEE Communications Letters, 20(7), 1457–1460.

    Google Scholar 

  16. Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Article  Google Scholar 

  17. Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.

    Article  Google Scholar 

  18. Carsello, R. D., Meidan, R., Allpress, S., O’Brien, F., Tarallo, J. A., Ziesse, N., et al. (1997). IMT-2000 standards: Radio aspects. IEEE Personal Communications, 4(4), 30–40.

    Article  Google Scholar 

  19. Morelli, M., & D’Amico, A. A. (2007). Maximum likelihood timing and carrier synchronization in burstmode satellite transmissions. EURASIP Journal on Wireless Communications and Networking, 2007(1), 1–8.

    Article  Google Scholar 

  20. Kang, A. S., & Vig, R. (2015). Computer aided ber performance analysis of fbmc cognitive radio for physical 25 layer under the effect of binary symmetric radio fading channel. Wireless Personal Communications, 82(3), 1263–1278.

    Article  Google Scholar 

  21. Pollet, T., Van Bladel, M., & Moeneclaey, M. (1995). BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise. IEEE Transactions on Communications, 43(2/3/4), 191–193.

    Article  Google Scholar 

  22. Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1–16.

    Article  Google Scholar 

  23. Akyildiz, I. F., Lee, W., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  24. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2016). NS-2 based simulation framework for cognitive radio sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-016-1418-5.

    Google Scholar 

  25. He, Q., & Schmeink, A. (2015). Comparison and evaluation between FBMC and ofdm systems. In Proceedings of 19th international ITG workshop on smart antennas, WSA 2015 (pp. 1–7). VDE.

  26. Bouhadda, H., Shaiek, H., Roviras, D., Zayani, R., Medjahdi, Y., & Bouallegue, R. (2014). Theoretical analysis of ber performance of nonlinearly amplified FBMC/OQAM and OFDM signals. EURASIP Journal on Advances in Signal Processing, 2014(1), 1–16.

    Article  Google Scholar 

  27. Ben Aissa, S., Hizem, M., & Bouallegue, R. (2016). Asynchronous OFDM interference analysis in multi-user cognitive radio networks. In 2016 international wireless communications and mobile computing conference (IWCMC) (pp. 1135–1140). IEEE.

  28. Cho, K., & Yoon, D. (2002). On the general BER expression of one-and two-dimensional amplitude modulations. IEEE Transactions on Communications, 50(7), 1074–1080.

    Article  Google Scholar 

  29. Dakhli, M. C., Zayani, R., & Bouallegue, R. (2014) Nonlinear distortion cancellation of high power amplifier nonlinearity on mimo MC-CDMA systems over Rayleigh fading channel. In 2014 International conference on multimedia computing and systems (ICMCS) (pp. 1291–1294). IEEE.

  30. Ben Aissa, S., Hizem, M., & Bouallegue, R. (2014). Performance analysis of underlay waveform in the downlink of asynchronous OFDM/FBMC based cognitive radio transceivers. In 10th international conference on wireless communications, networking and mobile computing (WiCOM 2014) (pp. 185–190). IET.

  31. Hassan, M. H., Hossain, M. J., & Bhargava, V. K. (2017). Cooperative beamforming for cognitive radio-based broadcasting systems in presence of asynchronous interference. IEEE Transactions on Vehicular Technology, 66(3), 2311–2323.

    Article  Google Scholar 

  32. Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys and Tutorials, 18(2), 924–948.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Ben Aissa.

Appendices

Appendix 1

After integration, we obtain

$$\begin{aligned} \psi (t,\tau ,0 )|^{{t}_{2}}_{{t}_{1}}&= \frac{t}{A} \left[ 1+ 2\sum _{n=1}^{K-1} {G}_{n}^{2}cos \Big (\frac{2\pi }{KT}n\tau \Big )\right] \nonumber \\&+\frac{KT}{\pi A} \Bigg \{ \sum _{n=1}^{K-1}\sum \limits _{m=1}^{K-1} (-1)^{n+m}\frac{G_{n}G_{m}}{n+m} sin\Big (\frac{2\pi }{KT}\big ((n+m)t-n\tau \big )\Big ) \nonumber \\&+\sum _{n=1}^{K-1} \sum _{m=1}^{K-1} (-1)^{n+m}\frac{G_{n}G_{m}}{n-m} sin\Big (\frac{2\pi }{KT}\big ((n-m)t-n\tau \big )\Big ) \nonumber \\&+\sum _{n=1}^{K-1} (-1)^{n}\frac{G_{n}}{n} \Big [sin\Big (\frac{2\pi }{KT}n\tau \Big ) sin\Big (\frac{2\pi }{KT}n(t-\tau )\Big ) \Big ] \Bigg \} \Bigg | _{t=t_1}^{t_2} \end{aligned}$$
(43)

when \(l\ne 0\),

$$\begin{aligned} \psi (t,\tau ,l )|^{{t}_{2}}_{{t}_{1}}&= \frac{T}{j2\pi lA} e^{j\frac{2\pi }{T}lt} \nonumber \\&+\frac{KT}{j2\pi A} \Bigg \{ \sum _{n=1}^{K-1}(-1)^n G_{n} \Big [ \frac{1+e^{-j\frac{2\pi }{KT}n\tau }}{n+KL}e^{j\frac{2\pi }{KT}(n+KL)t} \nonumber \\&-\frac{1+e^{j\frac{2\pi }{KT}n\tau }}{n-KL}e^{-j\frac{2\pi }{KT}(n-KL)t} \Big ]\nonumber \\&+\frac{KT}{j2\pi A}\>\sum _{n=1}^{K-1} \sum _{m=1}^{K-1} (-1)^{n+m}G_{n}G_{m}\Big [ e^{-j\frac{2\pi }{KT}n\tau } \Big (\frac{e^{j\frac{2\pi }{KT}(n+m+Kl)t}}{n+m+KL} \nonumber \\&+\frac{e^{j\frac{2\pi }{KT}(n-m+Kl)t}}{n-m+KL}\Big ) \nonumber \\&-e^{j\frac{2\pi }{KT}n\tau } \Big (\frac{e^{-j\frac{2\pi }{KT}(n+m-Kl)t}}{n+m-KL}+\frac{e^{-j\frac{2\pi }{KT}(n-m-Kl)t}}{n-m-KL}\Big ) \Big ] \Bigg | _{t=t_1}^{t_2} \end{aligned}$$
(44)

Appendix 2

Parameters of Eq. (9):

$$\begin{aligned} {\alpha }_{k^{\prime }}&= e^{{-j\frac{2\pi }{T}{k^{\prime }{\tau }_{SU_{1}}+j{\varphi }_{SU_{1}}}}}\\ \lambda _{1}&= {\tau }_{SU_{1}}+{\varDelta }_{s}\\ \lambda _{2}&= T+\varDelta +{\varDelta }_{s} \end{aligned}$$

Parameters of Eq. (10):

$$\begin{aligned} inf&= {\varDelta }_{s}+\varDelta \\ sup&= {\varDelta }_{s}+ T +\varDelta \\ a_{1}&= 2{\varDelta }_{s}+{\tau }_{SU_{1}}-\varDelta \\ {u}_{{k}^{\prime }}&= e^{{-j\frac{2\pi }{T}{k^{\prime }( {\tau }_{SU_{1}}+{\varDelta }_{s}})}+j{\varphi }_{SU_{1}}}\\ {\rho }_{l}&= e^{{-j\frac{2\pi l}{T}}(\varDelta +{\tau }_{SU_{1}} + 2{\varDelta }_{s})} \end{aligned}$$

Parameters of Eq. (12):

$$\begin{aligned} a^{\prime }_{1}=T+\varDelta -2{\varDelta }_{s}-{\tau }_{SU_{1}} \end{aligned}$$

Parameters of Eqs. (14), (15) and (16):

$$\begin{aligned} {K}_{i}&= {x}_{SU_{i}}e^{-j\frac{2\pi }{T} {k}^{\prime }_{i} ({\varDelta }_{s}+{\tau }_{SU_{i}})+j{\varphi }_{SU_{i}}}\\ {U}_{i}&= {x}_{SU_{i}}e^{-j\frac{2\pi }{T} {k}^{\prime }_{i} ({\varDelta }_{s}+{\tau }_{SU_{i}})+j{\varphi }_{SU_{i}}} e^{{-j\frac{2\pi {l}_{i}}{T}}(\varDelta +{\tau }_{SU_{i}} + 2{\varDelta }_{s})}\\ a_{i}&= 2{\varDelta }_{s}+{\tau }_{SU_{i}}-\varDelta \end{aligned}$$

Parameters of Eq. (26):

$$\begin{aligned} l&= {m}^{\prime } - m\\ {\tau }^{\prime }&= ({n}^{\prime }-{n}_{0})\frac{T}{2}+{\tau } \end{aligned}$$

Parameters of Eqs. (27) and (28):

$$\begin{aligned} \phi&= {\varphi }_{i}+\varphi _{m,n}-\varphi _{m_{0},n_{0}}\\ \phi ^{\prime }&= {\varphi }_{{m}_{0},{n}_{0}}-{\varphi }_{{m}^{\prime }_{j},{n}^{\prime }} \end{aligned}$$

Parameters of Eqs. (34):

$$\begin{aligned} l_{j}&= {m}^{\prime }_{j} - m\\ {\tau }^{\prime }_{i}&= ({n}^{\prime }-{n}_{0})\frac{T}{2}+{\tau }_{SU_{j}} \end{aligned}$$

Parameters of Eqs. (35) and (35):

$$\begin{aligned} \phi _{i}&= {\varphi }_{i}+\varphi _{m,n}-\varphi _{m_{0},n_{0}}\\ \phi ^{\prime }_{i}&= {\varphi }_{{m}_{0},{n}_{0}}-{\varphi }_{{m}^{\prime }_{j},{n}^{\prime }} \end{aligned}$$

Parameters of Eqs. (40) and (41):

$$\begin{aligned} U&= \sum \limits _{i=2}^{{N}_{PU}} \sum \limits _{m^{\prime }\in F_{PU}}{d}_{i}^{-\beta }P_{trans}(m^{\prime }) I(\tau _{i},m-m^{\prime }|)|H_{i}(m^{\prime })|^2\\ V&= \sum \limits _{j=1}^{{N}_{SU}}\sum \limits _{m^{\prime }\in F_{SU}}{d}_{j}^{-\beta }P_{trans}(m^{\prime }) I(\tau _{j},|m-m^{\prime }|) |H_{j}(m^{\prime })|^2\\ A_{i,m,m{\prime }}&= \left[ \frac{d_i}{d_1}\right] ^{-\beta } \frac{P_{trans}(m^{\prime })}{P_{trans}(m)} I(\tau _{i},|m-m^{\prime }|)\\ A_{j,m,m{\prime }}&= \left[ \frac{d_j}{d_1}\right] ^{-\beta } \frac{P_{trans}(m^{\prime })}{P_{trans}(m)}I(\tau _{j},|m-m^{\prime }|)\\ b&= \frac{N_0 B_0}{{d_1}^{-\beta } P_{trans}(m)} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Aissa, S., Hizem, M. & Bouallegue, R. Interference analysis for asynchrounous OFDM/FBMC based cognitive radio networks over Rayleigh fading channel. Wireless Netw 25, 1791–1804 (2019). https://doi.org/10.1007/s11276-017-1630-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1630-y

Keywords

Navigation