Advertisement

Wireless Networks

, Volume 24, Issue 5, pp 1809–1819 | Cite as

Design and wet-laboratory implementation of reliable end-to-end molecular communication

  • Taro Furubayashi
  • Yoshihiro Sakatani
  • Tadashi Nakano
  • Andrew Eckford
  • Norikazu Ichihashi
Article
  • 396 Downloads

Abstract

This paper describes a novel design and wet laboratory implementation of reliable end-to-end molecular communication. In the reliable end-to-end molecular communication described in this paper, source and destination bio-nanomachines exchange molecular packets through intermediate bio-nanomachines that are capable of packet replication. A source bio-nanomachine forms a molecular packet and transmits the molecular packet into the environment. An intermediate bio-nanomachine detects a molecular packet and produces its copies through packet replication. A destination bio-nanomachine, upon reception of a molecular packet, produces an acknowledgment molecular packet and transmits back to the source bio-nanomachine. This paper describes how the reliable end-to-end molecular communication can be biochemically implemented with RNA (ribonucleic acid) molecules and artificial cell systems. It also describes a simulation-based performance evaluation study showing the impact of model parameters on propagation delay in the reliable end-to-end molecular communication.

Keywords

Molecular communication Bio-nanomachine Packet replication Ack transmission Artificial cell RNA (ribonucleic acid) 

Notes

Acknowledgements

This work was supported through the Osaka University Humanware Innovation Program, a Leading Graduate School Program by the Japan Society of the Promotion of Science. This work was also supported by JSPS KAKENHI Grant Number JP25240011.

References

  1. 1.
    Ahmadzadeh, A., Noel, A., & Schober, R. (2014). Analysis and design of two-hop diffusion-based molecular communication networks. In: IEEE global communications conference (GLOBECOM 2014) (pp. 2820–2825).Google Scholar
  2. 2.
    Akyildiz, I. F., Brunetti, F., & Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.CrossRefGoogle Scholar
  3. 3.
    Bai, C., Leeson, M. S., & Higgins, M. D. (2015). Performance of SW-ARQ in bacterial quorum communications. Nano Communication Networks, 6(1), 3–14.CrossRefGoogle Scholar
  4. 4.
    Bansho, Y., Furubayashi, T., Ichihashi, N., & Yomo, T. (2016). Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proceedings of the National Academy of Sciences, 113(15), 4045–4050.CrossRefGoogle Scholar
  5. 5.
    Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.CrossRefGoogle Scholar
  6. 6.
    Cobo, L. C., & Akyildiz, I. F. (2010). Bacteria-based communication in nanonetworks. Nano Communication Networks, 1(4), 244–256.CrossRefGoogle Scholar
  7. 7.
    Eckford, A.W., Farsad, N., Hiyama, S., & Moritani, Y. (2010). Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proceedings of the IEEE international conference on nanotechnology (pp. 854–858).Google Scholar
  8. 8.
    Eckford, A.W., Furubayashi, T., & Nakano, T. (2016). RNA as a nanoscale data transmission medium: Error analysis. In: IEEE international conference on nanotechnology (IEEE NANO 2016). Google Scholar
  9. 9.
    Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys and Tutorials, 18(3), 1887–1919.Google Scholar
  10. 10.
    Felicetti, L., Femminella, M., Reali, G., Nakano, T., & Vasilakos, A. V. (2014). TCP-like molecular communications. IEEE Journal of Selected Areas in Communication (JSAC), 32(12), 2354–2367.CrossRefGoogle Scholar
  11. 11.
    Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y., & Yomo, T. (2013). In vitro evolution of \(\alpha\)-hemolysin using a liposome display. Proceedings of the National Academy of Sciences, 110(42), 16796–16801.CrossRefGoogle Scholar
  12. 12.
    Furubayashi, T., Nakano, T., Eckford, A., & Yomo, T. (2015). Reliable end-to-end molecular communication with packet replication and retransmission. In: IEEE global communications conference (GLOBECOM 2015). Google Scholar
  13. 13.
    Furubayashi, T., Nakano, T., Okaie, Y., Eckford, A., & Yomo, T. (2016). Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nanobioscience, 15(3), 284–288.CrossRefGoogle Scholar
  14. 14.
    Hiyama, S., Inoue, T., Shima, T., Moritani, Y., Suda, T., & Sutoh, K. (2008). Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small, 4(4), 410–415.CrossRefGoogle Scholar
  15. 15.
    Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., et al. (2005). Molecular communication. Proceedings of the NSTI Nanotechnology Conference, 3, 392–395.Google Scholar
  16. 16.
    Ichihashi, N., Usui, K., Kazuta, Y., Sunami, T., Matsuura, T., & Yomo, T. (2013). Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nature Communications, 4, 2494.CrossRefGoogle Scholar
  17. 17.
    Leeson, M. S., & Higgins, M. D. (2012). Forward error correction for molecular communications. Nano Communication Networks, 3(3), 161–167.CrossRefGoogle Scholar
  18. 18.
    Nakano, T., Eckford, A., & Haraguchi, T. (2013). Molecular communication. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. 19.
    Nakano, T., Moore, M., Wei, F., Vasilakos, A. V., & Shuai, J. W. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on NanoBioscience, 11(2), 135–148.CrossRefGoogle Scholar
  20. 20.
    Nakano, T., Okaie, Y., & Vasilakos, A. V. (2013). Transmission rate control for molecular communication among biological nanomachines. IEEE Journal of Selected Areas in Communication (JSAC), 31(12), 835–846.CrossRefGoogle Scholar
  21. 21.
    Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. In: Proceedings of the 2011 IEEE INFOCOM workshop on molecular and nanoscale communications (pp. 501–506) Google Scholar
  22. 22.
    Nilsson, R. J. A., Balaj, L., Hulleman, E., van Rijn, S., Pegtel, D. M., Walraven, M., et al. (2011). Blood platelets contain tumor-derived RNA biomarkers. Blood, 118, 3680–3683.CrossRefGoogle Scholar
  23. 23.
    Nkodo, A. E., Garnier, J. M., Tinland, B., Ren, H., Desruisseaux, C., McCormick, L. C., et al. (2001). Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis, 22(12), 2424–2432.CrossRefGoogle Scholar
  24. 24.
    Ortiz, M. E., & Endy, D. (2012). Engineered cell-cell communication via DNA messaging. Journal of Biological Engineering, 6(16), 1.Google Scholar
  25. 25.
    Petrov, V., Balasubramaniam, S., Lale, R., Moltchanov, D., Lio’, P., & Koucheryavy, K. (2014). Forward and reverse coding for chromosome transfer in bacterial nanonetworks. Nano Communication Networks, 5(1–2), 15–24.CrossRefGoogle Scholar
  26. 26.
    Pierobon, M., & Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on signal processing, 59(6), 2532–2547.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rayner, K. J., & Hennessy, E. J. (2013). Extracellular communication via microRNA: Lipid particles have a new message. Journal of Lipid Research, 54, 1174–1181.CrossRefGoogle Scholar
  28. 28.
    Rose, C., & Mian, I.S. (2015). A fundamental framework for molecular communication channels: Timing & payload. In: 2015 IEEE internatinoal conference on communications (ICC 2015) (pp. 1043–1048)Google Scholar
  29. 29.
    Shih, P. J., Lee, C. H., Yeh, P. C., & Chen, K. C. (2013). Channel codes for reliability enhancement in molecular communication. IEEE Journal on Selected Areas in Communications (JSAC), 31(12), 857–867.CrossRefGoogle Scholar
  30. 30.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., et al. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology, 19, 751–755.CrossRefGoogle Scholar
  31. 31.
    Srinivas, K. V., Adve, R. S., & Eckford, A. W. (2012). Molecular communication in fluid media: The additive inverse gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Walsh, F., & Balasubramaniam, S. (2013). Reliability and delay analysis of multi-hop virus-based nanonetworks. IEEE Transactions on Nanotechnology, 12(5), 674–684.CrossRefGoogle Scholar
  33. 33.
    Wang, X., Higgins, M. D., & Leeson, M. S. (2014). Simulating the performance of SW-ARQ schemes within molecular communications. Simulation Modelling Practice and Theory, 42, 178–188.CrossRefGoogle Scholar
  34. 34.
    Wang, X., Higgins, M. D., & Leeson, M. S. (2015). Relay analysis in molecular communications with time-dependent concentration. IEEE Communications Letters, 19(11), 1977–1980.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
  2. 2.Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan
  3. 3.Department of Electrical Engineering and Computer ScienceYork UniversityTorontoCanada

Personalised recommendations