Skip to main content

Advertisement

Log in

Impact of mobile instant messaging applications on signaling load and UE energy consumption

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Mobile Instant Messaging (MIM) applications transmit not only user-triggered messages (UTMs), but also keep-alive messages (KAMs) via radio access network, which induces heavy burden in control plane channel and wastes user equipment (UE) energy consumption. In this paper, we deduce the joint distribution of KAM period and UTM mean interval from the MIM application traffic characteristics. Correlating the joint distribution with radio resource control (RRC) state machine in LTE networks, we derive two analytical expressions for the control plane signaling load and UE energy consumption respectively. Then, the variation of signaling load and energy usage is demonstrated with different settings of RRC release timer, KAM period and UTM mean interval. The analysis indicates that KAM period is the upper bound of RRC release timer when reducing the signaling load. Besides, five times of UTM mean interval is the upper bound of KAM period when reducing the UE energy consumption and signaling load. These results can guide both network operators and MIM application developers to properly set control parameters for balancing the signaling load and UE energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cuadrado, F., & Dueñas, J. C. (2012). Mobile application stores: Success factors, existing approaches, and future developments. IEEE Communication Magazine, 50(11), 160–167.

    Article  Google Scholar 

  2. Karimiyazdi, R., & Mokhber, M. (2015). Improving viral marketing campaign via mobile instant messaging (MIM) applications. In Proceedings of 1st world virtual conference social and behavioural sciences (pp. 1–13).

  3. Deloitte. (2015). Short message services versus instant messaging: Value versus volume. http://www2.deloitte.com/tw/tc/pages/technology-media-and-telecommunications/articles/2014prediction-short-messaging-svcs-vs-instant-messaging.html. Accessed 03 June 2015.

  4. Zhou, X., Zhao, Z., Li, R., Zhou, Y., Palicot, J., & Zhang, H. (2014). Understanding the nature of social mobile instant messaging in cellular networks. IEEE Communications Letters, 18(3), 389–392.

    Article  Google Scholar 

  5. Li, R., Zhao, Z., Qi, C., Zhou, X., Zhou, Y., & Zhang, H. (2015). Understanding the traffic nature of mobile instantaneous messaging in cellular networks: A revisiting to \(\alpha\)-stable models. IEEE Access, 3, 1416–1422.

    Article  Google Scholar 

  6. Yang, C. (2011). Weather the signaling storm. Huawei Communicate, 61, 18–20.

    Google Scholar 

  7. Choi, Y., Yoon, C. H., Kim, Y. S., Heo, S. W., & Silvester, J. A. (2014). The impact of application signaling traffic on public land mobile networks. IEEE Communications Magazine, 52(1), 166–172.

    Article  Google Scholar 

  8. Abdelrahman, O., & Gelenbe, E. (2014). Signalling storms in 3G mobile networks. In 2014 IEEE international conference on communications (ICC) (pp. 1017–1022). IEEE.

  9. Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V., Papagiannaki, K., Crowcroft, J., et al. (2013). Staying online while mobile: The hidden costs. In Proceedings of the ninth ACM conference on emerging networking experiments and technologies (pp. 315–320). ACM.

  10. Gupta, M., Jha, S., Koc, A., & Vannithamby, R. (2013). Energy impact of emerging mobile Internet applications on LTE networks: Issues and solutions. IEEE Communication Magazine, 51(2), 90–97.

    Article  Google Scholar 

  11. Ou, Z., Dong, S., Dong, J., Nurminen, J. K., Ylä-Jääski, A., & Wang, R. (2013). Characterize energy impact of concurrent network-intensive applications on mobile platforms. In Proceedings of the eighth ACM international workshop on Mobility in the evolving internet architecture (pp. 23–28). ACM.

  12. Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy consumption in mobile phones: A measurement study and implications for network applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference (pp. 280–293). ACM.

  13. Zhou, Z., Dong, M., Ota, K., Wu, J., & Sato, T. (2014). Energy efficiency and spectral efficiency tradeoff in device-to-device (D2D) communications. IEEE Wireless Communications Letters, 3(5), 485–488.

    Article  Google Scholar 

  14. Xu, Y., Hu, R. Q., Qian, Y., & Znati, T. (2016). Video quality-based spectral and energy efficient mobile association in heterogeneous wireless networks. IEEE Transactions on Communications, 64(2), 805–817.

    Article  Google Scholar 

  15. Schwartz, C., Hoßfeld, T., Lehrieder, F., & Tran-Gia, P. (2013). Angry apps: The impact of network timer selection on power consumption, signalling load, and web qoe. Journal of Computer Networks and Communications, 2013, 1–13.

    Article  Google Scholar 

  16. Zhang, Z., Zhao, Z., Guan, H., Miao, D., & Tan, Z. (2013). Study of signaling overhead caused by keep-alive messages in LTE network. In 2013 IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–5). IEEE.

  17. Nokia Corporation, Nokia Siemens Networks. (2011). Power consumption and signalling load for background traffic. 3GPP TSG-RAN WG2 LTE contribution R2-115931.

  18. Jia, Y., Zhang, Y., Liang, L., & Zhou, S. (2015). An energy-efficient system signaling control method based on mobile application traffic. In 2015 IEEE international conference on communications (ICC) (pp. 232–237). IEEE.

  19. Puttonen, J., Virtej, E., Keskitalo, I., & Malkamäki, E. (2012). On LTE performance trade-off between connected and idle states with always-on type applications. In 2012 IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 981–985). IEEE.

  20. Nokia Corporation, Nokia Siemens Networks. (2012). Further results on network signalling load and UE power consumption. 3GPP TSG-RAN WG2 LTE contribution R2-120367.

  21. Foddis, G., Garroppo, R. G., Giordano, S., Procissi, G., Roma, S., & Topazzi, S. (2015). LTE traffic analysis for signalling load and energy consumption trade-off in mobile networks. In 2015 IEEE international conference on communications (ICC) (pp. 6005–6010). IEEE.

  22. The 3rd Generation Partnership Project (3GPP); Technical Specification Group GSM/EDGE; Radio Access Network (2014). GERAN study on mobile data applications. TR 43.802, v12.0.0.

  23. The 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) (2016). Radio Resource Control (RRC) Protocol specification. TS 36.331, v13.1.0.

  24. The 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network; LTE Radio Access Network (RAN) (2012). Enhancements for Diverse Data Applications. TR 36.822, v11.0.0.

Download references

Acknowledgments

This work is sponsored by the National High Technology Research and Development Program of China (863 Program: 2015AA01A706); and by the Scientific Research Foundation of the Ministry of Education of China—China Mobile (No. MCM20150102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjian Jia.

Appendices

Appendix 1: Derivation of the PDF of \(t_m\) when \(0 \le t_m<t_{{KA}}\)

\(t_m^n\) is a exponentially distributed random variable. Assume it is a sequence with infinite length of L. The number of times that a specific \(t_m^n\) appears in the whole sequence is \(L \cdot (\lambda e^{-\lambda t_m^n})\). Therefore, the probability of the specific \(t_m^n\) when \(t_m^n \ge 0\) can be rewrited as follows:

$$\begin{aligned} f_c(t_m^n)=\lambda e^{-\lambda t_m^n}=\frac{L \cdot (\lambda e^{-\lambda t_m^n})}{L}. \end{aligned}$$

With different value of \(t_m^n\), the respective probability can be obtained. Therefore, \(f_c(t_m^n)\) can be used to denote the PDF of \(t_m^n\). After the transformation of (1), the length of the new sequence, i.e., \(L'\) and the number of times that a specific \(t_m\) appears in the new sequence, i.e., \(n(t_m)\) are no longer L and \(L \cdot (\lambda e^{-\lambda t_m^n})\). But both of them can be expressed as the sum of piecewise functions of \(f_c(t_m^n)\) when \(0\le t_m<t_{{KA}}\):

$$\begin{aligned} \begin{aligned} n(t_m)&=\sum _{j=0}^{\left[ \frac{t_{max}}{t_{{KA}}}\right] }L \cdot f_c(t_m+j \cdot t_{{KA}}),\\ L'&=L+ \sum _{j=1}^{\left[ \frac{t_{max}}{t_{{KA}}}\right] }jL\cdot \left[ \int ^{(j+1)t_{{KA}}}_{jt_{{KA}}} f_c(t_m)dt_m- f_c(jt_{{KA}})\right] , \end{aligned} \end{aligned}$$

where \(t_{max}\) is the maximal value of \(t_m\). Therefore, the PDF of \(t_m\) when \(0\le t_m<t_{{KA}}\) can be denoted as follows:

$$\begin{aligned} f(t_m)=\frac{n(t_m)}{l(t_m)}=\frac{\sum _{j=0}^{\left[ \frac{t_{max}}{t_{{KA}}}\right] }L \cdot f_c(t_m+j \cdot t_{{KA}})}{L+\sum _{j=1}^{\left[ \frac{t_{max}}{t_{{KA}}}\right] }j L\cdot \left[ \int ^{(j+1)t_{{KA}}}_{jt_{{KA}}} f_c(t_m)dt_m- f_c(jt_{{KA}})\right] }. \end{aligned}$$

Since \(t_{max}\) is much longer than \(t_{{KA}}\), we have \(t_{max}=N \cdot t_{{KA}}\). Thus, \(f(t_m)\) can be simplified as follows:

$$\begin{aligned} \begin{aligned} f(t_m)&=\frac{\sum _{j=0}^{N}f_c(t_m+j \cdot t_{{KA}})}{1+\sum _{j=1}^{N}j\left[ \int ^{(j+1)t_{{KA}}}_{jt_{{KA}}} f_c(t_m)dt_m- f_c(jt_{{KA}})\right] } \\&=\frac{\frac{\lambda \cdot e^{-\lambda \cdot t_m}}{1-e^{-\lambda \cdot t_{{KA}}}}}{\frac{1}{1-e^{-\lambda \cdot t_{{KA}}}}-Ne^{-\lambda \cdot (N+1)\cdot t_{{KA}}}-\left[ \frac{\lambda \cdot e^{-\lambda \cdot t_{{KA}}}}{(1-e^{-\lambda \cdot t_{{KA}}})^2}-\frac{N\lambda \cdot e^{-\lambda \cdot (N+1)\cdot t_{{KA}}}}{1-e^{-\lambda \cdot t_{{KA}}}}\right] }. \end{aligned} \end{aligned}$$

Generally, N is large enough, \(f(t_m)\) can be further simplified:

$$\begin{aligned} \begin{aligned} f(t_m) =\frac{\frac{\lambda \cdot e^{-\lambda \cdot t_m}}{1-e^{-\lambda \cdot t_{{KA}}}}}{\frac{1}{1-e^{-\lambda \cdot t_{{KA}}}}-\frac{\lambda \cdot e^{-\lambda \cdot t_{{KA}}}}{(1-e^{-\lambda \cdot t_{{KA}}})^2}} =\frac{\lambda \cdot e^{-\lambda \cdot t_m}}{1-\frac{\lambda \cdot e^{-\lambda \cdot t_{{KA}}}}{1-e^{-\lambda \cdot t_{{KA}}}}}. \end{aligned} \end{aligned}$$

Since \(t_{{KA}}\) is much bigger than \(1/\lambda\) in most case, \(\frac{\lambda \cdot e^{-\lambda \cdot t_{{KA}}}}{1-e^{-\lambda \cdot t_{{KA}}}}\) is negligibly small. Therefore, the final expression of \(f(t_m)\) when \(0\le t_m<t_{{KA}}\) is:

$$\begin{aligned} f(t_m)=\lambda e^{-\lambda t_m}, \end{aligned}$$

which is the same with \(f_c(t_m^n)\).

Appendix 2: Calculation of the mean value of \(t_m\) when \(0\le t_m\le x~(0\le x<t_{{KA}})\)

When \(0\le t_m<t_{{KA}}\), the PDF of \(t_m\) is typical exponentially distributed. In addition of \(0\le x< t_{{KA}}\), the PDF of \(t_m\) when \(0 \le t_m \le x\) is head-truncated exponentially distributed, which is denoted by \(f_t(t_m)\). Since the shape of \(f_t(t_m)\) is the same with \(f(t_m)\), \(f_t(t_m)\) can be expressed as follows:

$$\begin{aligned} f_t(t_m)=\alpha f(t_m), \end{aligned}$$

where \(\alpha\) can be calculated by:

$$\begin{aligned} \int ^{x}_{0} \alpha \cdot \lambda e^{-\lambda t_m} dt_m=1, \end{aligned}$$

Therefore, \(\alpha\) can be obtained accordingly:

$$\begin{aligned} \alpha =\frac{1}{1-e^{-\lambda x}}, \end{aligned}$$

Then, the mean value of \(t_m\) when \(0\le t_m\le x~(0\le x<t_{{KA}})\), i.e., h(x) can be calculated as follows:

$$\begin{aligned} h(x) =\int ^{x}_{0}t_m \cdot f_t(t_m)dt_m=\frac{\left( x+\frac{1}{\lambda }\right) \cdot e^{-\lambda x}-\frac{1}{\lambda }}{e^{-\lambda x}-1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Zhang, Y., Liang, L. et al. Impact of mobile instant messaging applications on signaling load and UE energy consumption. Wireless Netw 23, 1645–1654 (2017). https://doi.org/10.1007/s11276-016-1374-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1374-0

Keywords

Navigation