Skip to main content
Log in

Narrowband frequency-selective up-link and down-link evaluation of daily personal-exposure induced by wireless operating networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The aim of the study is to present a frequency-selective evaluation of personal exposure induced by wireless operating networks in typical daily environments, derived by analysis of 1,905,162 samples of electric field strength, taken at a 5-s sampling interval. Measurements were collected with calibrated isotropic three-axial electric field probe personal exposure meters operating in the frequency range 88–5850 MHz. ‘’ To estimate the electric field distribution below the measurement equipment detection limit, the robust regression on order statistics method was applied, enabling determination of mean values of electric field strength per wireless technology for: home, office, transport, outdoor, and leisure environments. The highest value of total electric field strength exposure is obtained on public transport (buses) followed by coffee shops and outdoor environments, whereas the lowest values are captured in home and office environments. Most of the mean values of the electric field were less than 0.06 V/m. Furthermore, the analyses between the contribution of uplink and downlink exposures for operating wireless cellular networks are given, including a comparison of uplink and downlink electric field levels from other countries. Readings of the 24-h personal-exposure pattern, reveal the GSM + UMTS downlink and Wi-Fi as dominant exposure contributors. The results of this study show that spatial and temporal exposure levels in Kosovo are comparable to those reported for other European countries and far below the international safety guidelines and exposure limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, N., Plets, D., Goudos, S. K., Martens, L., & Joseph, W. (2015). Multi-objective network planning optimization algorithm: Human exposure, power consumption, cost, and capacity. Wireless Networks, 21(3), 841–857.

    Article  Google Scholar 

  2. De Domenico, A., Diez, L. F., Aguero, R., Ktenas, D., & Savin, V. (2015). EMF-aware cell selection in heterogeneous. IEEE Cellular Networks Communications Letters, 19(2), 271–274.

    Article  Google Scholar 

  3. Varsier, N., Plets, D., Corre, Y., Vermeeren, G., Joseph, W., Aerts, S., & Wiart, J. (2015). A novel method to assess human population exposure induced by a wireless cellular network. Bioelectromagnetics, 36, 451.

    Article  Google Scholar 

  4. Gati, A., Conil, E., Wong, M. F., & Wiart, J. (2010). Duality between uplink local and downlink whole-body exposures in operating networks. IEEE Transactions on Electromagnetic Compatibility, 52(4), 829–836.

    Article  Google Scholar 

  5. International Commission on Non-Ionizing Radiation Protection (ICNIRP). (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics, 74, 494–522.

    Google Scholar 

  6. Urbinello, D., Joseph, W., Huss, A., Verloock, L., Beekhuizen, J., Vermeulen, R., & Röösli, M. (2014). Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits. Environment International, 68, 49–54.

    Article  Google Scholar 

  7. Gati, A., Hadjem, A., Wong, M. F., & Wiart, J. (2009). Exposure induced by WCDMA mobiles phones in operating networks. IEEE Transactions on Wireless Communications, 8(12), 5723–5727.

    Article  Google Scholar 

  8. Bechet, P., Miclaus, S., & Bechet, A. C. (2012). Improving the accuracy of exposure assessment to stochastic-like radiofrequency signals. IEEE Transactions on Electromagnetic Compatibility, 54(5), 1169–1177.

    Article  Google Scholar 

  9. Kuhn, S., & Kuster, N. (2013). Field evaluation of the human exposure from multiband, multisystem mobile phones. IEEE Transactions on Electromagnetic Compatibility, 55(2), 275–287.

    Google Scholar 

  10. Bamba, A., Joseph, W., Andersen, J. B., Tanghe, E., Vermeeren, G., Plets, D., & Martens, L. (2012). Experimental assessment of specific absorption rate using room electromagnetics. IEEE Transactions on Electromagnetic Compatibility, 54(4), 747–757.

    Article  Google Scholar 

  11. Mann, S. (2010). Assessing personal exposures to environmental radiofrequency electromagnetic fields. Comptes Rendus Physique, 11(9), 541–555.

    Article  Google Scholar 

  12. de Miguel-Bilbao, S., García, J., Ramos, V., & Blas, J. (2015). Assessment of human body influence on exposure measurements of electric field in indoor enclosures. Bioelectromagnetics, 36(2), 118–132.

    Article  Google Scholar 

  13. Bolte, J. F., van der Zande, G., & Kramer, J. (2011). Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics, 32(8), 652–663.

    Article  Google Scholar 

  14. Vanveerdeghem, P., Van Torre, P., Thielens, A., Knockaert, J., Joseph, W., & Rogier, H. (2014). Compact personal distributed wearable exposimeter. IEEE Sensors Journal, 5(8), 4393.

    Google Scholar 

  15. Joseph, W., Frei, P., Roösli, M., Thuróczy, G., Gajsek, P., Trcek, T., & Martens, L. (2010). Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environmental Research, 110(7), 658–663.

    Article  Google Scholar 

  16. Bolte, J. F., & Eikelboom, T. (2012). Personal radiofrequency electromagnetic field measurements in the Netherlands: Exposure level and variability for everyday activities, times of day and types of area. Environment International, 48, 133–142.

    Article  Google Scholar 

  17. Vermeeren, G., Markakis, I., Goeminne, F., Samaras, T., Martens, L., & Joseph, W. (2013). Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece. Progress in Biophysics and Molecular Biology, 113(2), 254–263.

    Article  Google Scholar 

  18. Thuróczy, G., Molnár, F., Jánossy, G., Nagy, N., Kubinyi, G., Bakos, J., & Szabó, J. (2008). Personal RF exposimetry in urban area. Annals of Telecommunications-Annales des Télécommunications, 63(1–2), 87–96.

    Article  Google Scholar 

  19. Joseph, W., Frei, P., Röösli, M., Vermeeren, G., Bolte, J., Thuróczy, G., & Martens, L. (2012). Between-country comparison of whole-body SAR from personal exposure data in Urban areas. Bioelectromagnetics, 33(8), 682–694.

    Article  Google Scholar 

  20. Apollonio, F., Liberti, M., Paffi, A., Merla, C., Marracino, P., Denzi, A., & d’Inzeo, G. (2013). Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: A systematic approach. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2031–2045.

    Article  Google Scholar 

  21. Urbinello, D., Joseph, W., Verloock, L., Martens, L., & Röösli, M. (2014). Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities. Environmental Research, 134, 134–142.

    Article  Google Scholar 

  22. Dürrenberger, G., Fröhlich, J., Rösli, M., & Mattsson, M. O. (2014). EMF monitoring—concepts, activities, gaps and options. International Journal of Environmental Research and Public Health, 11(9), 9460–9479.

    Article  Google Scholar 

  23. Gajšek, P., Ravazzani, P., Wiart, J., Grellier, J., Samaras, T., & Thuróczy, G. (2015). Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). Journal of Exposure Science & Environmental Epidemiology, 25(1), 37–44.

    Article  Google Scholar 

  24. Röösli, M., Frei, P., Mohler, E., Braun-Fahrländer, C., Bürgi, A., Fröhlich, J., & Egger, M. (2008). Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects. Bioelectromagnetics, 29(6), 471–478.

    Article  Google Scholar 

  25. Joseph, W., Verloock, L., Goeminne, F., Vermeeren, G., & Martens, L. (2012). Assessment of RF exposures from emerging wireless communication technologies in different environments. Health Physics, 102(2), 161–172.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Ministry of Education, Science and Technology of Republic of Kosovo, in frame of the research project: “Assessment of personal exposure to environmental radiofrequency electromagnetic fields—Kosovo vs. Europe exposure levels”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enver Hamiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrani, M., Hamiti, E., Ahma, L. et al. Narrowband frequency-selective up-link and down-link evaluation of daily personal-exposure induced by wireless operating networks. Wireless Netw 23, 1191–1200 (2017). https://doi.org/10.1007/s11276-016-1215-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1215-1

Keywords

Navigation