Skip to main content
Log in

On spectrum allocation in cognitive radio networks: a double auction-based methodology

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Auction is often applied in cognitive radio networks due to its efficiency and fairness properties. An important issue in designing an auction mechanism is how to utilize the limited spectrum resource in an efficient manner. In order to achieve this goal, we propose a predictive double spectrum auction model in this paper. Our auction model first obtains the bidding range from statistical analysis, and then separates the interval into independent states and employees a Markovian prediction based algorithm to generate guidelines for the bidding range of primary and secondary users, respectively. Comparing with existing approaches, our proposed auction model is more efficient in spectrum utilization and satisfies the economic properties. Extensive simulation results show that our work achieves an utilization ratio up to 91 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. To simplify the description, we use the item “bid” to present \(M_{j}^{s}(t)\) of \(p_j\) or \(M_{i}^{b}(t)\) of \(s_i\) in the following.

References

  1. Liu, Z., Wang, S., Wu, W., Tian, X., Li, C., & Wang, X. (2014). A predictive methodology for truthful double spectrum auctions in cognitive radio networks. In Proceedings of IEEE GLOBECOM (pp. 1017–1022).

  2. Rappaport, T. S. (2002). Wireless communications: Principles and practice. Upper Saddle River: Prentice-Hall PTR.

    MATH  Google Scholar 

  3. FSPT Force. (2002). Report of the spectrum efficiency working group. FCC Spectrum Policy Task Force (SPTF), no. 03-237.

  4. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio (pp. 271–350). Royal Institute of Technology (KTH), Doctor of Technology. http://www.citeulike.org/group/17835/article/9342875.

  5. Liang, Q., Wang, X., Tian, X., Wu, F., & Zhang, Q. (2014). Two-dimensional route switching in cognitive radio networks: A game-theoretical framework. IEEE/ACM Transactions on Networking, 99, 1–14.

    Google Scholar 

  6. Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y.-D. (2012). Opportunistic spectrum access in cognitive radio networks: Global optimization using local interaction games. IEEE Journal of Selected Topics in Signal Processing, 6(2), 180–194.

    Article  Google Scholar 

  7. Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y.-D. (2012). Opportunistic spectrum access in unknown dynamic environment: Game-theoretic stochastic learning solution. IEEE Transactions on Wireless Communications, 11(4), 1380–1391.

    Article  Google Scholar 

  8. Gao, L., Wang, X., Xu, Y., & Zhang, Q. (2011). Spectrum trading in cognitive radio networks: A contract-theoretic modeling approach. IEEE Journal on Selected Areas in Communications, 29(4), 843–855.

    Article  Google Scholar 

  9. Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H.-H. (2010). Spectrum sharing in cognitive radio networks—An auction based approach. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 40(3), 587–596.

    Article  Google Scholar 

  10. Xu, Y., Anpalagan, A., Wu, Q., Shen, L., Gao, Z., & Wang, J. (2013). Decision-theoretic distributed channel selection for opportunistic spectrum access: Strategies, challenges and solutions. IEEE Communications Surveys and Tutorials, 15(4), 1689–1713.

    Article  Google Scholar 

  11. Iosifidis, G., & Koutsopoulos, I. (2010). Double auction mechanisms for resouce allocation in autonomous networks. IEEE Journal on Selected Areas in Communications, 28(1), 95–102.

    Article  Google Scholar 

  12. Wang, Q., Ye, B., Xu, T., Lu, S., & Guo, S. (2012). DOTA: a double truthful auction for spectrum allocation in dynamic spectrum access. In Proceedings of IEEE WCNC (pp. 1490–1495).

  13. Wang, W., Liang, B., & Li, B. (2014). Designing truthful spectrum double auctions with local markets. IEEE Transactions on Mobile Computing, 13(1), 75–88.

    Article  Google Scholar 

  14. Feng, X., Chen, Y., Zhang, J., Zhang, Q., & Li, B. (2012). TAHES: Truthful double auction for heterogeneous spectrums. In Proceedings of IEEE INFOCOM (pp. 3076–3080).

  15. Xu, H., Jin, J., & Li, B. (2010). A secondary market for spectrum. In Proceedings of IEEE INFOCOM (pp. 1–5).

  16. Li, D., Xu, Y., Wang, X., Xu, Y., & Guizani, M. (2011). Coalitional game theoretic approach for secondary spectrum access in cooperative cognitive radio networks. IEEE Transactions on Wireless Communications, 10(3), 844–856.

    Article  Google Scholar 

  17. Zhou, X., & Zheng, H. (2009). TRUST: A general framework for truthful double spectrum auctions. In Proceedings of IEEE INFOCOM (pp. 999–1007).

  18. Li, C., Liu, Z., Geng, X., Dong, M., Yang, F., Gan, X., et al. (2014). Two dimension spectrum allocation for cognitive radio networks. IEEE Transactions on Wireless Communications, 13(3), 1410–1423.

    Article  Google Scholar 

  19. McAfee, R. (1992). A dominant strategy double auction. Journal of Economic Theory, 56(2), 434–450.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hiscott, R. N. (1981). Chi-square tests for Markov chain analysis. Journal of the International Association for Mathematical Geology, 13(1), 69–80.

    Article  Google Scholar 

  21. Davis, J., & Sampson, R. (2002). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  22. Ramanathan, S. (1999). Two-dimensional route switching in cognitive radio networks: A game-theoretical framework. Wireless Networks, 5(2), 81–94.

    Article  Google Scholar 

  23. Reis, C., Mahajan, R., Rodrig, M., Wetherall, D., & Zahorjan, J. (2006). Measurement-based models of delivery and interference in static wireless networks. In Proceedings of ACM SIGCOMM (pp. 51–62).

  24. Subramanian, A. P., Gupta, H., Das, S. R., & Buddhikot, M. M. (2007). Fast spectrum allocation in coordinated dynamic spectrum access based cellular networks. In Proceedings of IEEE DySPAN (pp. 320–330).

  25. Choji, D. N., Eduno, S. N., & Kassem, G. T. (2013). Markov chain model application on share price movement in stock market. Computer Engineering and Intelligent Systems, 4(10), 84–95.

    Google Scholar 

  26. Ghezzi, L. L., & Piccardi, C. (2003). Stock valuation along a Markov chain. Applied Mathematics and Computation, 141(2/3), 385–393.

    Article  MathSciNet  MATH  Google Scholar 

  27. Anderson, T. W., & Goodman, L. A. (1957). Statistical inference about Markov chains. The Annals of Mathematical Statistics, 28(1), 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  28. Miall, A. D. (1973). Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20(3), 347–364.

    Article  Google Scholar 

  29. Harbaugh, J. W., & Bonham-Carter, G. (1970). Computer simulation in geology. New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61271176, 61401334, 61571350, 61532012, 61325012, 61271219, 61221001, and 61428205; the Fundamental Research Funds for the Central Universities (BDY021403, JB140113); and the 111 Project (B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changle Li.

Additional information

The early version of this paper is appeared in the Proceedings of IEEE Globecom 2014 [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, C. On spectrum allocation in cognitive radio networks: a double auction-based methodology. Wireless Netw 23, 453–466 (2017). https://doi.org/10.1007/s11276-015-1152-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1152-4

Keywords

Navigation