Skip to main content
Log in

Physical layer capture aware MAC for WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The physical layer capture (PLC) effect occurs frequently in the real wireless deployment; when two or more nodes transmit simultaneously, a receiver can successfully decode the collided frame if the signal strength of one frame is sufficiently high enough. Although the PLC effect increases the channel utilization, it results in an unfair channel access among the wireless nodes. In this paper, we propose a PLC-aware media access control (MAC) algorithm that employs the average waiting time as a common control reference. It enables the nodes to converge to a fair channel access by changing one of the IEEE 802.11 enhanced distributed channel access parameters: contention window, arbitration interframe space, or transmission opportunity. We then find multiple control references that meet the fair channel access constraint and obtain the near-optimal reference that maximizes the overall throughput. Through ns-2 simulations and real in-door experiments using the universal software radio peripheral platform, we evaluate the fairness and throughput performance of the PLC-aware MAC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The CW can be configured by setting CWmin = CWmax.

  2. In this paper, the channel access means that a node not only obtains a transmission opportunity but also accomplishes a successful transmission.

References

  1. Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs, In Proceedings of ACM SIGCOMM05.

  2. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  3. Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.

    Article  Google Scholar 

  4. Kim, H., & Hou, J. C. (2003). Improving protocol capacity with model based frame scheduling in IEEE 802.11-operated WLANs. In Proceedings of ACM MOBICOM03.

  5. Qiao, D., & Shin, K. (2002). Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF. In Proceedings of IEEE IWQoS02.

  6. Yang, Y., Wang, J., & Kravets, R. (2005). Distributed optimal contention window control for elastic traffic in wireless LANs. In Proceedings of. IEEE INFOCOM05.

  7. Hu, C., & Hou, J. C. (2007). A novel approach to contention control in IEEE 802.11e-operated WLANs. In Preedings of IEEE INFOCOM07.

  8. Kochut, A., Vasan, A., Shankar, A., & Agrawala, A. (2004). Sniffing out the correct physical layer capture model in 802.11b. In Proceedings of IEEE ICNP04.

  9. Han, S., Nandagopal, T., Bejerano, Y., & Choi, H. (2009). Analysis of spatial unfairness in wireless LANs. In Proceedings of IEEE INFOCOM09.

  10. Ware, C., Judge, J., Chicharo, J., & Dutkiewicz, E. (2000). Unfairness and capture behaviour in 802.11 ad hoc networks. In Proceedings of IEEE ICC00.

  11. Lee, J., Kim, W., Lee, S., Jo, D., Ryu, J., Kwon, T., & Choi, Y. (2007). An experimental study on the capture effect in 802.11a networks. In Proceedings ACM WinTech07.

  12. Ganu, S., Ramachandan, K., Gruteser, M., Seskar, I., & Deng, J. (2006). Methods for restoring MAC layer fairness in IEEE 802.11 networks with physical layer capture. In Proceedings of ACM REALMAN06.

  13. Jeong, J. (2011). Fair MAC protocols for WLANs, Ph.D. thesis, Seoul National University. http://library.snu.ac.kr/eng/search/DetailView.ax?sid=1&cid=3685085.

  14. Zorzi, M., & Rao, R. (1994). Capture and retransmission control in mobile radio. IEEE Journal on Selected Areas in Communications, 12(8), 1289–1298.

    Article  Google Scholar 

  15. Hadzi-Velkov, Z., & Spasenovski, B. (2003). Capture effect with diversity in IEEE 802.11b DCF. In Proceedings of ISCC03.

  16. Ye, F., Yi, S., & Sikdar, B. (2003). Improving spatial reuse of IEEE 802.11 based ad hoc networks. In Proceedings of IEEE GLOBECOM03.

  17. Cisco Inc., Aironet 802.11a/b/g wireless cardbus adapter. http://www.cisco.com/.

  18. Iperf. http://dast.nlanr.net/Projects/Iperf/.

  19. Franklin, G. F., Powell, J. D., & Emami-Naeini, A. Feedback control of dynamic systems (4th ed.). Upper Saddle River, NJ: Prentice Hall.

  20. Chen, C. (1999). Linear system theory and design (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  21. Ettus Research, LLC. http://www.ettus.com.

  22. Sadeghi, B., Kanodia, V., Sabharwal, A., & Knightly, E. (2002). Opportunistic media access for multirate ad hoc networks. In Proceedings of ACM MOBICOM02.

  23. Chen, Z., Yang, X., & Vaidya, N. H. (2008). Dynamic spatial backoff in fading environments. In Proceedings of IEEE MASS08.

  24. Choi, J., Yoo, J., & Kim, C. (2008). A distributed fair scheduling scheme with a novel analysis model in IEEE 802.11 wireless LANs. IEEE Transactions on Vehicular Technology, 57(5), 3083–3093.

    Article  Google Scholar 

  25. Gupta, P., & Kumar, P. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  MATH  Google Scholar 

  26. Vaidya, N., Bahl, P., & Gupta, S. (2000). Distributed fair scheduling in a wireless LAN. In Proceedings of ACM MOBICOM00.

  27. Choi, S., Park, K., & Kim, C. (2006). Performance impact of interlayer dependence in infrastructure WLANs. IEEE Transactions on Mobile Computing, 5(7), 829–845.

    Article  Google Scholar 

  28. Chang, H., Misra, V., Rubenstein, D. (2006). A general model and analysis of physical layer capture in 802.11 networks. In Proceedings of IEEE INFOCOM06.

  29. Boer, J. et al. (1999). Wireless LAN with enhanced capture provision, US Patent 5987033.

  30. Yee, J., & Pezeshki-Esfahani, H. (2002). Understanding wireless LAN performance trade-offs. Communication System Design. 32–35. www.commsdesign.com/csdmag/sections/feature_article/showArtcle.jhtml?articleID=16505827

  31. CMU Monarch Group, CMU Monarch extensions to ns. [Online]. Available:http://www.monarch.cs.cmu.edu.

  32. Patras, P., Banchs, A., Serrano, P., & Azcorra, A. (2011). A control-theoretic approach to distributed optimal configuration of 802.11 WLANs. IEEE Transactions on Mobile Computing, 10(6), 897–910.

    Article  Google Scholar 

  33. Kleinrock, L. (1975). Queueing systems, Volume I: Theory. Hoboken: Wiley.

  34. Std. 802.11-2007. (2007). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, ANSI/IEEE Std. 802.11-2007.

  35. Kamerman, A., & Monteban, L. (1997). WaveLAN 2: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.

    Article  Google Scholar 

  36. Heusse, M., Rousseu, F. G., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In Proeedings of IEEE INFOCOM03.

  37. Kim, J., & Kim, C. (2004). Performance analysis and evaluation of IEEE 802.11e EDCF. Wireless Communications and Mobile Computing, 4(1), 55–74.

    Article  Google Scholar 

  38. GNU Radio Project. http://gnuradio.org/redmine/wiki/gnuradio.

  39. Saha, D., & Birdsall, T. G. (1989). Quadrature–Quadrature phase-shift keying. IEEE Transactions on Communication, 31(5), 437–448.

    Article  Google Scholar 

  40. Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. In Proceedings of IEEE INFOCOM03.

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0023856), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0027410), and by the Seoul R&BD Program (WR080951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J., Choi, S., Yoo, J. et al. Physical layer capture aware MAC for WLANs. Wireless Netw 19, 533–546 (2013). https://doi.org/10.1007/s11276-012-0483-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0483-7

Keywords

Navigation