Skip to main content

Advertisement

Log in

Differentiation of closely-related species within Acinetobacter baumannii-calcoaceticus complex via Raman spectroscopy: a comparative machine learning analysis

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation. No datasets were generated or analysed during the current study.

References

  • Ahuja T, Ghosh A, Mondal S, Basuri P, Jenifer SK, Srikrishnarka P et al (2019) Ambient electrospray deposition Raman spectroscopy (AESD RS) using soft landed preformed silver nanoparticles for rapid and sensitive analysis. Analyst 144(24):7412–7420

    Article  CAS  PubMed  Google Scholar 

  • Bagudo AI, Obande GA, Harun A, Singh KKB (2020) Advances in automated techniques to identify Acinetobacter calcoaceticusAcinetobacter baumannii complex. Asian Biomed 14(5):177–186

    Article  CAS  Google Scholar 

  • Bernards AT, Toorn J, Boven CPA, Dijkshoorn L (1996) Evaluation of the ability of a commercial system to identify Acinetobacter genomic species. Eur J Clin Microbiol Infect Dis 15(4):303–308

    Article  CAS  PubMed  Google Scholar 

  • Britton K, Dalterio R, Nelson W, Britt D, Sperry JF (1988) Ultraviolet resonance Raman spectra of Escherichia coli with 222.5–251.0 nm pulsed laser excitation. Appl Spectrosc 42(5):782–788

    Article  CAS  Google Scholar 

  • Ho C-S, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M et al (2019) Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun 10(1):4927

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayan H, Pu H, Sun D-W (2022) Analyzing macromolecular composition of E. coli O157: H7 using Raman-stable isotope probing. Spectrochim Acta A 276:121217

    Article  CAS  Google Scholar 

  • Kang HM, Yun KW, Choi EH (2023) Molecular epidemiology of Acinetobacter baumannii complex causing invasive infections in Korean children during 2001–2020. Ann Clin Microbiol Antimicrob. https://doi.org/10.1186/s12941-023-00581-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Chin Y-W (2023) Antimicrobial agent against methicillin-resistant Staphylococcus aureus biofilm monitored using Raman spectroscopy. Pharmaceutics 15(7):1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim MH, Lee WI, Kang SY, Jeon YL (2018) Misidentification of Acinetobacter baumannii as Alcaligenes faecalis by VITEK 2 system; case report. Lab Med 49(1):e14–e17

    Article  Google Scholar 

  • Lin Y-C, Sheng W-H, Chang S-C, Wang J-T, Chen Y-C, Wu R-J et al (2008) Application of a microsphere-based array for rapid identification of Acinetobacter spp. with distinct antimicrobial susceptibilities. J Clin Microbiol 46(2):612–617

    Article  CAS  PubMed  Google Scholar 

  • Liu PY-F, Wu W-L (1997) Use of different PCR-based DNA fingerprinting techniques and pulsed-field gel electrophoresis to investigate the epidemiology of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Diagn Microbiol Infect Dis 29(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Tang J-W, Lyu J-W, Wang J-J, Pan Y-C, Shi X-Y et al (2022) Discrimination between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae strains through computational analysis of surface-enhanced Raman spectra: a pilot study. Microbiol Spectr. https://doi.org/10.1128/spectrum.02409-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Tang J-W, Mou J-Y, Lyu J-W, Di Y-W, Liao Y-L et al (2023) Rapid discrimination of Shigella spp. and Escherichia coli via label-free surface enhanced Raman spectroscopy coupled with machine learning algorithms. Front Microbiol 14:1101357

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Rasco BA, Jabal JM, Aston DE, Lin M, Konkel ME et al (2011) Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl Environ Microbiol 77(15):5257–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Li H, Qiu H, Wang L, Feng J, Fu YV (2023) Identification of pathogens and detection of antibiotic susceptibility at single-cell resolution by Raman spectroscopy combined with machine learning. Front Microbiol 13:1076965

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Clark NM, Zhanel GG (2022) Infections due to Acinetobacter baumannii–calcoaceticus complex: escalation of antimicrobial resistance and evolving treatment options. Semin Respir Crit Care Med 43(01):97–124

    Article  PubMed  Google Scholar 

  • Lyu J-W, Zhang XD, Tang J-W, Zhao Y-H, Liu S-L, Zhao Y et al (2023) Rapid prediction of multidrug-resistant Klebsiella pneumoniae through deep learning analysis of SERS spectra. Microbiol Spectr. https://doi.org/10.1128/spectrum.04126-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Milani ES, Hasani A, Varschochi M, Sadeghi J, Memar MY, Hasani A (2021) Biocide resistance in Acinetobacter baumannii: appraising the mechanisms. J Hosp Infect 117:135–146

    Article  CAS  PubMed  Google Scholar 

  • Nocera FP, Attili A-R, De Martino L (2021) Acinetobacter baumannii: its clinical significance in human and veterinary medicine. Pathogens 10(2):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert H, Gerner-Smidt P (1995) Comparison of ribotyping and pulsed-field gel electrophoresis for molecular typing of Acinetobacter isolates. J Clin Microbiol 33(5):1402–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Das A, Rao KH, Forssberg K (2003) Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy 71(1–2):285–292

    Article  CAS  Google Scholar 

  • Sousa C, Botelho J, Silva L, Grosso F, Nemec A, Lopes J et al (2014a) MALDI-TOF MS and chemometric based identification of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species. Int J Med Microbiol 304(5–6):669–677

    Article  CAS  PubMed  Google Scholar 

  • Sousa C, Silva L, Grosso F, Nemec A, Lopes J, Peixe L (2014b) Discrimination of the Acinetobacter calcoaceticusAcinetobacter baumannii complex species by Fourier transform infrared spectroscopy. Eur J Clin Microbiol Infect Dis 33(8):1345–1353

    Article  CAS  PubMed  Google Scholar 

  • Tang J-W, Liu Q-H, Yin X-C, Pan Y-C, Wen P-B, Liu X et al (2021) Comparative analysis of machine learning algorithms on surface enhanced Raman spectra of clinical Staphylococcus species. Front Microbiol 12:696921

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J-W, Li J-Q, Yin X-C, Xu W-W, Pan Y-C, Liu Q-H et al (2022) Rapid discrimination of clinically important pathogens through machine learning analysis of surface enhanced Raman spectra. Front Microbiol 13:843417

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J-W, Lyu J-W, Lai J-X, Zhang X-D, Du Y-G, Zhang X-Q et al (2023) Determination of Shigella spp. via label-free SERS spectra coupled with deep learning. Microchem J 189:108539

    Article  CAS  Google Scholar 

  • Teixeira AM, Nemec A, Sousa C (2019) Differentiation of taxonomically closely related species of the genus Acinetobacter using Raman spectroscopy and chemometrics. Molecules 24(1):168

    Article  Google Scholar 

  • Ugolotti E, Marco ED, Bandettini R, Tripodi G, Biassoni R (2016) The whole genome sequencing of Acinetobacter-calcoaceticus-baumannii complex strains involved in suspected outbreak in an Intensive Care Unit of a pediatric hospital. J Hosp Adm 5(6):81

    Google Scholar 

  • Usman M, Tang J-W, Li F, Lai J-X, Liu Q-H, Liu W et al (2023) Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. J Adv Res 51:91–107

    Article  CAS  PubMed  Google Scholar 

  • Vila J, Marcos MA, Jimenez de Anta MT (1996) A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol 44(6):482–489

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu W, Tang J-W, Wang J-J, Liu Q-H, Wen P-B et al (2021) Applications of Raman spectroscopy in bacterial infections: principles, advantages, and shortcomings. Front Microbiol. https://doi.org/10.3389/fmicb.2021.683580

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tang J-W, Li F, Usman M, Wu C-Y, Liu Q-H et al (2022) Identification of bacterial pathogens at genus and species levels through combination of Raman spectrometry and deep-learning algorithms. Microbiol Spectr. https://doi.org/10.1128/spectrum.02580-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteway C, Breine A, Philippe C, Van der Henst C (2022) Acinetobacter baumannii. Trends Microbiol 30(2):199–200

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wu D, Li Y, Xu J, Gao Z, Song Y-Y et al (2018) Plasmon-triggered hot-spot excitation on SERS substrates for bacterial inactivation and in situ monitoring. ACS Appl Mater Interfaces 10(30):25219–25227

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Kurotani A, Chikayama E, Kikuchi J (2020) Signal deconvolution and noise factor analysis based on a combination of time–frequency analysis and probabilistic sparse matrix factorization. Int J Mol Sci 21(8):2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L-Y, Tian B, Huang Y-H, Gu B, Ju P, Luo Y et al (2023) Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis. PeerJ 11:e16161

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their thoughtful comments that greatly improve the quality of the manuscript.

Funding

This study was supported by Guangdong Basic and Applied Basic Research Foundation [Grant No. 2022A1515220023], Talent Start-Up Funding of Guangdong Provincial People’s Hospital [Grant No. KY012023293], and Research Funding for Guangdong Provincial Medical Technology [Grant No. B2021010].

Author information

Authors and Affiliations

Authors

Contributions

L.W., S.L.L. and J.W.T. conceived and designed the experiments. L.W. provided platform and resources, and contributed to project administration and student supervision. X.S.X., L.F.Y., and Y.F.L. carried out the experimental and computational investigations. Q.Y., Y.T.S., J.C., and X.R.W. contributed to the data analysis and visualization. All the authors wrote and revised the manuscript. All the authors approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Jia-Wei Tang, Su-Ling Liu or Liang Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, XS., Yao, LF., Luo, YF. et al. Differentiation of closely-related species within Acinetobacter baumannii-calcoaceticus complex via Raman spectroscopy: a comparative machine learning analysis. World J Microbiol Biotechnol 40, 146 (2024). https://doi.org/10.1007/s11274-024-03948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-024-03948-6

Keywords

Navigation