Skip to main content
Log in

Fruit residues as substrates for single-cell oil production by Rhodococcus species: physiology and genomics of carbohydrate catabolism

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Strains belonging to R. opacus, R. jostii, R. fascians, R. erythropolis and R. equi exhibited differential ability to grow and produce lipids from fruit residues (grape marc and apple pomace), as well as single carbohydrates, such as glucose, gluconate, fructose and sucrose. The oleaginous species, R. opacus (strains PD630 and MR22) and R. jostii RHA1, produced higher yields of biomass (5.1–5.6 g L−1) and lipids (38–44% of CDW) from apple juice wastes, in comparison to R. erythropolis DSM43060, R. fascians F7 and R. equi ATCC6939 (4.1–4.3 g L−1 and less than 10% CDW of lipids). The production of cellular biomass and lipids were also higher in R. opacus and R. jostii (6.8–7.2 g L−1 and 33.9–36.5% of CDW of lipids) compared to R. erythropolis, R. fascians, and R. equi (3.0–3.6 g L−1 and less than 10% CDW of lipids), during cultivation of cells on wine grape waste. A genome-wide bioinformatic analysis of rhodococci indicated that oleaginous species possess a complete set of genes/proteins necessary for the efficient utilization of carbohydrates, whereas genomes from non-oleaginous rhodococcal strains lack relevant genes coding for transporters and/or enzymes for the uptake, catabolism and assimilation of carbohydrates, such as gntP, glcP, edd, eda, among others. Results of this study highlight the potential use of the oleaginous rhodococcal species to convert sugar-rich agro-industrial wastes, such as apple pomace and grape marc, into single-cell oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the National Center for Biotechnology Information (NCBI) website (http://www.ncbi.nlm.nih.gov/), and in the case of R. fascians F7 from Rapid Annotation using Subsystem Technology (RAST) server, available from the corresponding author on reasonable request.

References

  • A.P.H.A. (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Alvarez HM (2016) Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 120:28–39

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Steinbüchel A (2010) Physiology biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus microbiology monographs series. Springer, Heidelberg, pp 263–290

    Chapter  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusion by Rhodococcus opacus PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Eur J Lipid Sci Technol 99:239–246

    CAS  Google Scholar 

  • Araki N, Suzuki Miyauchi K, Kasai D, Masai E, Fukuda M (2011) Identification and characterization of uptake systems for glucose and fructose in Rhodococcus jostii RHA1. Mol Microbiol Biotechnol 20:125–136

    CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotation susing subsystems technology. BMC Genomics 8:9–75

    Google Scholar 

  • Bequer Urbano S, Di Capua C, Cortez N, Farías ME, Alvarez HM (2014) Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 18:375–384

    Article  Google Scholar 

  • Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH Jr, Titgemeyer F (2004) In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186:1367–1373

    Article  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly (β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol 142:329–337. https://doi.org/10.1016/j.biortech.2013.05.012

    Article  CAS  PubMed  Google Scholar 

  • Choi SA, Choi WI, Lee JS, Kim SW, Lee G, Yun J, Park J (2015) Hydrothermal acid treatment for sugar extraction from Golenkinia sp. Bioresour Technol 190:408–411

    Article  CAS  PubMed  Google Scholar 

  • Christ K, Burrit R (2013) Critical environmental concerns in wine production: an integrative review. J Clean Prod 53:232–242

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Vecino X, Varela-Alende JL, Barral MT, Cruz JM, Moldes AB (2011) Valorization of winery waste and the costs of not recycling. Waste Manag 31:2327–2335

    Article  CAS  PubMed  Google Scholar 

  • Dhillon SD, Surinder K, Satinder KB (2013) Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review. Renew Sust Energ Rev 27:789–805

    Article  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Duncombe WG (1963) The colorimetric micro-determination of long-chain fatty acids. Biochem J 88:7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes Castanha R, Salgado de Morais LA, Pinto A, Rosim Monteiro RT (2013) Comparison of two lipid extraction methods produced by yeast in cheese whey. Braz Arch Biol Technol 56:629–636

    Article  Google Scholar 

  • Fraenkel DG (1968) Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J Bacteriol 95:1267–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraenkel DG (1996) Glycolysis. Class I reactions: generation of precursor metabolites and energy. In: Neidhardt FC, Vurtiss R, Lin EC (eds) Escherichia coli and Salmonella, cellular and molecular biology, 2nd edn. American Society for Microbiology Press, Whashington, pp 189–198

    Google Scholar 

  • Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M (2008) Coordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322

    Article  CAS  PubMed  Google Scholar 

  • García Ortega AM, Ponce Rivas E (2003) Metabolismo del carbono en microorganismos de interés biomédico y biotecnológico: vía de Entner-Doudoroff. Appl Biotechnol 20:85–94

    Google Scholar 

  • Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agroindustrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  • Herrero OM, Alvarez HM (2016) Whey as a renewable source for lipid production by Rhodococcus strains: physiology and genomics of lactose and galactose utilization. Eur J Lipid Sci Technol 188:262–272

    Article  Google Scholar 

  • Herrero OM, Moncalián G, Alvarez HM (2016) Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology 162:384–397

    Article  CAS  PubMed  Google Scholar 

  • Herrero OM, Villalba MS, Lanfranconi MP, Alvarez HM (2018) Rhodococcus bacteria as a promising source of oils from olive mil wastes. World J Microbiol Biotechnol 34:114. https://doi.org/10.1007/s11274-018-2499-3

    Article  CAS  PubMed  Google Scholar 

  • Hixson J, Wilkes E, Smith P, Forsyth K (2014) Understanding the composition of grape marc and its potential as a livestock feed supplement. AWRI Tech Rev 213:11–15

    Google Scholar 

  • Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7(9):e1002219. https://doi.org/10.1371/journal.pgen.1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen HD, Krogfelt KA, Cornett C, Hansen SH, Christensen SB (2010) Hydrophilic carboxylic acids and iridoidglycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J Agric Food Chem 50:6871–6874

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyotoencyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosseva MR (2009) Processing of foodwastes. In: Taylor SL (ed) Advances in food and nutrition research. Academic Press, Burlington, pp 57–136

    Google Scholar 

  • Kurosawa K, Boccazzi P, de Almeida MN, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotech 147:212–218

    Article  CAS  Google Scholar 

  • Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM (2006) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letek M, González P, Macarthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vázquez-Boland JA (2010) The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6(9):e1001145. https://doi.org/10.1371/journal.pgen.1001145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Du W, Li YH, Liu DH, Zhao ZB (2007) Enzymatic transesterification of yeast oil for biodiesel fuel production. Chin J Process Eng 7:137–140

    CAS  Google Scholar 

  • Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF (2010) Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Bitechnol 87:703–713

    Article  CAS  Google Scholar 

  • Mäkelä M, Kwong CW, Broström M, Yoshikawa K (2017) Hydrothermal treatment of grape marc for solid fuel applications. Energy Convers Manag 145:371–377

    Article  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587. https://doi.org/10.1073/pnas.0607048103

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirabella N, Castellani V, Sala S (2014) Current options for the valorization of food manufacturing waste: a review. J Cleaner pro 65:28–41

    Article  Google Scholar 

  • Moon MW, Park SY, Choi SK, Lee JK (2007) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12:43–50

    CAS  PubMed  Google Scholar 

  • Muhlack RA, Potumarthi R, Jeffery DW (2018) Sustainable wineries through waste valorisation: a review of grape marc utilisation for value-added products. Waste Manag 72:99–118

    Article  CAS  PubMed  Google Scholar 

  • Na KS, Nagayasu K, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Development of a genetic transformation system for benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:408–414

    Article  CAS  PubMed  Google Scholar 

  • Nothaft H, Dresel D, Willimek A, Mahr K, Niederweis M, Titgemeyer F (2003) The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 185:7019–7023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  PubMed  Google Scholar 

  • Pleissner D, Chi Lam W, Sun Z, Ki Lin CS (2013) Foodwaste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146. https://doi.org/10.1016/j.biortech.2013.03.088

    Article  CAS  PubMed  Google Scholar 

  • Pleissner D, Qi Q, Gao C, Perez Rivero C, Webb C, Ki Lin CZ, Joachim V (2016) Valorization of organic residues for the production of added value chemicals: a contribution to the bio-based economy. Biochem Eng J 116:3–16. https://doi.org/10.1016/j.bej.2015.12.016

    Article  CAS  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate carbohydrate phosphotransferase systems of bacteria. FEMS Microbiol Rev 57:543–594

    Article  CAS  Google Scholar 

  • Saier MH, Reizer J (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13:755–764

    Article  CAS  PubMed  Google Scholar 

  • Saisriyoot M, Thanapimmetha A, Suwaleerat T, Chisti Y, Srinophakun P (2019) Biomass and lipid production by Rhodococcus opacus PD630 in molasses-based media with and without osmotic-stress. J Biotechnol 297:1–8

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG, Laltwasser J, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38:209–222

    Article  CAS  PubMed  Google Scholar 

  • Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346

    Article  CAS  PubMed  Google Scholar 

  • Shalini R, Gupta DK (2010) Utilization of pomace from Apple processing industries: a review. J Food Sci Technol 47:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    Article  CAS  PubMed  Google Scholar 

  • Titgemeyer F (1993) Signal transduction in chemotaxis mediated by the bacterial phosphotransferase system. J Cell Biochem 51:69–74

    Article  CAS  PubMed  Google Scholar 

  • Titgemeyer F, Walkenhorst J, Reizer J, Stuiver MH, Cui X, Saier MH (1995) ldentification and characterization of phosphoenolpyruvate fructose phosphotransferase systems in three Streptomyces species. Microbiology 141:51–58

    Article  CAS  PubMed  Google Scholar 

  • Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, Rehm N, Hillmann D, Stephan J (2007) A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol 189:5903–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wezel GP, Mahr K, König M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55:624–636

    Article  PubMed  Google Scholar 

  • Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL (2008) Apple Pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12

    Article  CAS  PubMed  Google Scholar 

  • Villalba MS, Hernández MA, Silva RA, Alvarez HM (2013) Genome sequences of triacylglycerol in Rhodococcus as a platform for comparative genomics. J Mol Biochem 2:94–105

    CAS  Google Scholar 

  • Villas-Bôas SG, Esposito E, Mitchell DA (2002) Microbial conversion of lignocellulosic residues for production of animal feeds. Anim Feed Technol 98:1–12

    Article  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  PubMed  Google Scholar 

  • Wawrik B, Harriman BH (2010) Rapid, colorimetric quantification of lipid from algal cultures. J Microbial Methods 80:262–266. https://doi.org/10.1016/j.mimet.2010.01.016

    Article  CAS  Google Scholar 

  • Willis LB, Walker GC (1999) A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport system for alpha-glucosides. J Bacteriol 181:4176–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zablotny R, Fraenkel DG (1967) Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrase. J Bacteriol 93:1579–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Lee C, Yu C, Cheng Y, Simmons CW, Zhang R, Jenkins BM, Vander Gheynst JS (2012) Ensilage and bioconversion of grape pomace into fuel ethanol. J Agri Food Chem 60:11128–11134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The companies “Jugos S.A.” and “Fruto de los Lagos” are gratefully acknowledged for providing the apple and grape waste, respectively.

Funding

This work was funded by Project PICT2020-Serie A 02215, PUE2018-INBIOP 0033-CONICET, and SCyT of the University of Patagonia San Juan Bosco. Alvarez HM is a career researcher of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Contributions

O.M.H. made acquisition, analysis, and interpretation of data, participated in the design of the work, and in the preparation of the main manuscript text, figures and tables. H.M.A. participated in the conception and design of the work, in the writing, review and editing of the manuscript, and in the funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Héctor M. Alvarez.

Ethics declarations

Competing interests

The authors have non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero, O.M., Alvarez, H.M. Fruit residues as substrates for single-cell oil production by Rhodococcus species: physiology and genomics of carbohydrate catabolism. World J Microbiol Biotechnol 40, 61 (2024). https://doi.org/10.1007/s11274-023-03866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03866-z

Keywords

Navigation