Skip to main content
Log in

Unveiling novel insights into haloarchaea (Halolamina pelagica CDK2) for alleviation of drought stress in wheat

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plant growth promoting microorganisms have various implications for plant growth and drought stress alleviation; however, the roles of archaea have not been explored in detail. Herein, present study was aimed for elucidating potential of haloarchaea (Halolamina pelagica CDK2) on plant growth under drought stress. Results showed that haloarchaea inoculated wheat plants exhibited significant improvement in total chlorophyll (100%) and relative water content (30.66%) compared to the uninoculated water-stressed control (30% FC). The total root length (2.20-fold), projected area (1.60-fold), surface area (1.52-fold), number of root tips (3.03-fold), number of forks (2.76-fold) and number of links (1.45-fold) were significantly higher in the inoculated plants than in the uninoculated water stressed control. Additionally, the haloarchaea inoculation resulted in increased sugar (1.50-fold), protein (2.40-fold) and activity of antioxidant enzymes such as superoxide dismutase (1.93- fold), ascorbate peroxidase (1.58-fold), catalase (2.30-fold), peroxidase (1.77-fold) and glutathione reductase (4.70-fold), while reducing the accumulation of proline (46.45%), glycine betaine (35.36%), lipid peroxidation (50%), peroxide and superoxide radicals in wheat leaves under water stress. Furthermore, the inoculation of haloarchaea significantly enhanced the expression of stress-responsive genes (DHN, DREB, L15, and TaABA-8OH) and wheat vegetative growth under drought stress over the uninoculated water stressed control. These results provide novel insights into the plant-archaea interaction for plant growth and stress tolerance in wheat and pave the way for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K (2021) Effects of abiotic stress on soil microbiome. Int J Mol Sci 22(16):9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhem, pp 273–286

    Google Scholar 

  • Ahmad I, Zaib S, Alves PCMS, Luthe DS, Bano A, Shakeel SN (2019) Molecular and physiological analysis of drought stress responses in Zea mays treated with plant growth promoting rhizobacteria. Biol Plant 63:536–547. https://doi.org/10.32615/bp.2019.092

    Article  CAS  Google Scholar 

  • Akinola SA, Babalola OO (2021) The fungal and archaeal community within plant rhizosphere: a review on their contribution to crop safety. J Plant Nutr 44(4):600–618. https://doi.org/10.1080/01904167.2020.1845376

    Article  CAS  Google Scholar 

  • Alori ET, Emmanuel OC, Glick BR, Babalola OO (2020) Plant–archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World J Microbiol Biotechnol 36:1–10

    Article  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69. https://doi.org/10.3389/fpls.2017.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari B, Khademian R, Sedaghati B (2020) Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci Hortic 263:109132

    Article  CAS  Google Scholar 

  • Azeem M, Haider MZ, Javed S, Saleem MH, Alatawi A (2022) Drought stress amelioration in maize (Zea mays L.) by inoculation of Bacillus spp. Strains Under Sterile Soil Conditions Agric 12:50. https://doi.org/10.3390/agriculture12010050

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Abid M, Rizwan M, Shahid MR, Alotaibi M, Al-Ashkar I (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10(1):16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum N, Ahanger MA, Zhang L (2020) AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ Exp Bot p.104088

  • Begum N, Wang L, Ahmad H, Akhtar K, Roy R, Khan MI, Zhao T (2022) Co-inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microb Ecol 83(4):971–988.

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bramhachari PV, Nagaraju GP, Kariali E (2018) Current perspectives on rhizobacterial-eps interactions in alleviation of stress responses: novel strategies for sustainable agricultural productivity. In role of rhizospheric microbes in soil; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, pp. 33–55

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Castillo FJ, Penel C, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Involv Ca2+ Plant Physiol 74(4):846–851. https://doi.org/10.1104/pp.74.4.846

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29(5):789–803. https://doi.org/10.1007/s11274-012-1234-8

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary P, Xu M, Ahama L, Chaudhary A, Kumar G, Adeleke BS, Verma KK, Hu DM, Širić I, Kumar P, Popescu SM (2023) Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity: a review. Agron 13(3):643. https://doi.org/10.3390/agronomy13030643

    Article  CAS  Google Scholar 

  • Chiappero J, del Rosario Cappellari L, Alderete LGS, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crops Prod 139:111553

    Article  CAS  Google Scholar 

  • Costa C, Dwyer LM, Hamilton RI, Hamel C, Nantais L, Smith DL (2000) A sampling method for measurement of large root systems with scanner‐based image analysis. Agron J 92(4):621–627.

  • Dave BP, Anshuman K, Hajela P (2006) Siderophores of halophilic Archaea and their chemical characterization. Indian J Exp Biol 44(4):340–344

    CAS  PubMed  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101. https://doi.org/10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Dolferus R, Thavamanikumar S, Sangma H, Kleven S, Wallace X, Forrest K, Rebetzke G, Hayden M, Borg L, Smith A, Cullis B (2019) Determining the genetic architecture of reproductive stage drought tolerance in wheat using a correlated trait and correlated marker effect model. G3. Genes Genomes Genet 9:473–489. https://doi.org/10.1534/g3.118.200835

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168(4265):167–167. https://doi.org/10.1038/168167a0

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. Plant J 33(4):751–763

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice cluster I archaea the key methane producers in the rice rhizosphere. Sci 313(5785):370–372

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (FAO) of the United Nations (2020) Water scarcity. Retrieved from http://www.fao.org/water/water-scarcity/en/

  • Franklin AA Jr, McLeod IC, Microlife Technics Inc (1979) Method and compositions for inoculating leguminosae with bacteria. U S Patent 4:136486

    Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53(372):1249–1254. https://doi.org/10.1093/jexbot/53.372.1249

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth‐promoting rhizobacteria. Plant Biol 18(6):992–1000. https://doi.org/10.1111/plb.12505

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2):303–307. https://doi.org/10.1007/BF02374789

    Article  CAS  Google Scholar 

  • Hasan MM, Alabdallah NM, Salih AM, Al-Shammari AS, ALZahrani SS, Al Lawat AH, Jahan MS, Rahman MA, Fang XW (2023) Modification of starch content and its management strategies in plants in response to drought and salinity: current status and future prospects. J Soil Sci Plant Nutr 23(1):92–105

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M (2018) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot 115:50–57. https://doi.org/10.1016/j.sajb.2017.12.006

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Dexter AR (2017) Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem 118:107–120. https://doi.org/10.1016/j.plaphy.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Natarajan VP, Wang F (2021) Towards enriching and isolation of uncultivated archaea from marine sediments using a refined combination of conventional microbial cultivation methods. Mar Life Sci Technol 3:231–242. https://doi.org/10.1007/s42995-021-00092-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Huang J, Huang J, Ahmad S, Nanda S, Anwar S, Shakoor A, Zhu C, Zhu L, Cao X, Jin Q (2020) Rice production under climate change: adaptations and mitigating strategies. Environment, climate, plant and vegetation growth. Springer, Cham, pp 659–686. https://doi.org/10.1007/978-3-030-49732-3_26

    Chapter  Google Scholar 

  • Im YJ, Ji M, Lee A, Killens R, Grunden AM, Boss WF (2009) Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol 151(2):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2014) Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Jahan MS, Li G, Xie D, Farag R, Hasan MM, Alabdallah NM, Al-Harbi NA, Al-Qahtani SM, Zeeshan M, Nasa J, Altaf MA (2023) Melatonin mitigates salt-induced growth inhibition through the regulation of carbohydrate and nitrogen metabolism in tomato seedlings. J Soil Sci Plant Nutr pp.1–19

  • Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106. https://doi.org/10.3389/fmicb.2019.02106

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J, Kim JS, Taffner J, Berg G, Ryu CM (2020) Archaea, tiny helpers of land plants. Comput Struct Biotechnol J 18:2494–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemia F, Safaria N (2018) Effect of mulches on some characteristics of a drought tolerant flowering plant for urban landscaping. Desert 23(1):75–84

    Google Scholar 

  • Khan A, Tan DKY, Munsif F, Afridi MZ, Shah F, Wei F, Fahad S, Zhou R (2017) Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ Sci Pollut Res 24:23471–23487

    Article  CAS  Google Scholar 

  • Khan N, Ali S, Tariq H, Latif S, Yasmin H, Mehmood A, Shahid MA (2020) Water conservation and plant survival strategies of rhizobacteria under drought stress. Agron 10(11):1683. https://doi.org/10.3390/agronomy10111683

    Article  Google Scholar 

  • Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao ZQ (2019) Development of drought-tolerant transgenic wheat: achievements and limitations. Int J Mole Sci 20(13):3350

    Article  CAS  Google Scholar 

  • Kim W, Iizumi T, Nishimori M (2019) Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteorol Climatol 58(6):1233–1244

    Article  Google Scholar 

  • Kousar B, Bano A, Khan N (2020) PGPR modulation of secondary metabolites in tomato infested with spodopteralitura. Agron 10:778

    Article  Google Scholar 

  • Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2(4):125–131

    CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87

    Article  CAS  PubMed  Google Scholar 

  • Li H, Guo Q, Jing Y, Liu Z, Zheng Z, Sun Y, Xue Q, Lai H (2020) Application of Streptomyces pactum Act12 enhances drought resistance in wheat. J Plant Growth Regul 39(1):122–132

    Article  Google Scholar 

  • Liu Y, Song Q, Li D, Yang X, Li D (2017) Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 8:1018. https://doi.org/10.3389/fpls.2017.01018

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YC, Meng FR, Zhang CY, Zhang N, Sun MS, Ren JP, Niu HB, Wang X, Yin J (2012) Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and-tolerant wheat (Triticum aestivum L). J Plant Biol 55(5):349–360. https://doi.org/10.1007/s12374-011-0032-4

    Article  CAS  Google Scholar 

  • Ma M, Du H, Sun T, An S, Yang G, Wang D (2019) Characteristics of archaea and bacteria in rice rhizosphere along a mercury gradient. Sci Total Environ 650:1640–1651

    Article  CAS  PubMed  Google Scholar 

  • Manjunatha BS, Nivetha N, Krishna GK, Elangovan A, Pushkar S, Chandrashekar N, Aggarwal C, Asha AD, Chinnusamy V, Raipuria RK, Watts A (2022) Plant growth-promoting rhizobacteria Shewanella putrefaciens and Cronobacter dublinensis enhance drought tolerance of pearl millet by modulating hormones and stress‐responsive genes. Physiol Plant 174:e13676

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:591911

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    Article  CAS  PubMed  Google Scholar 

  • McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WR, Arend M, Breshears DD, Brodribb T, Choat B, Cochard H (2022) Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat Rev Earth Environ 3(5):294–308.

  • Mishra A, Singh SP, Mahfooz S, Shukla R, Mishra N, Pandey S, Dwivedi S, Pandey V, Shirke PA, Nautiyal CS (2019) External supplement of impulsive micromanager Trichoderma helps in combating CO 2 stress in rice grown under FACE. Plant Mol Biol Rep 37(1):1–13

    Article  CAS  Google Scholar 

  • Mishra SK, Khan MH, Misra S, Dixit VK, Gupta S, Tiwari S, Gupta SC, Chauhan PS (2020) Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol Biochem 150:1–14

    Article  CAS  PubMed  Google Scholar 

  • Mishra UN, Saha D, Chauhan J, Kumar V, Jatav HS, Lal D, Kumari A, Singhal RK, Chandra K (2022) Emerging roles of Osmoprotectants in response to multiple abiotic stress tolerance in plants. Omics analysis of plants under abiotic stress. Apple Academic Press, pp 179–206

  • Mohammadi R, Amri A (2011) Genotype x environment interaction for durum wheat grain yield and selection for drought tolerance in irrigated and droughted environments in Iran. J Crop Sci Biotech 14:265–274. https://doi.org/10.1007/s12892-011-0011-9

    Article  Google Scholar 

  • Murali M, Singh SB, Gowtham HG, Shilpa N, Prasad M, Aiyaz M, Amruthesh KN (2021) Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR-Bacillus amyloliquefaciens through Antioxidant defense system. Microbiol Res 253:126891.

  • Nagrale DT, Gawande SP (2018) Archaea: ecology, application, and conservation. In: Sharma S, Varma A (eds) Microbial Resource Conservation. Soil Biology, vol 54. Springer, Cham, pp 431–451. https://doi.org/10.1007/978-3-319-96971-8_16

    Chapter  Google Scholar 

  • Naitam MG, Kaushik R (2021) Archaea: an agro-ecological perspective. Curr Microbiol 78(7):2510–2521. https://doi.org/10.1007/s00284-021-02537-2

    Article  CAS  PubMed  Google Scholar 

  • Naitam MG, Ramakrishnan B, Grover M, Kaushik R (2023) Rhizosphere dwelling halophilic archaea: a potential candidate for alleviating salinity-associated stress in agriculture. Front Microbiol 14:1212349

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Narayanasamy S, Thangappan S, Uthandi S (2020) Plant growth-promoting Bacillus sp. Cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system. Microbiol Res 239:126518

    Article  CAS  PubMed  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131. https://doi.org/10.1007/s10725-013-9874-8

    Article  CAS  Google Scholar 

  • Nguyen LT, Osanai Y, Anderson IC, Bange MP, Tissue DT, Singh BK (2018) Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431(1):371–387

    Article  CAS  Google Scholar 

  • Nounjan N, Chansongkrow P, Charoensawan V, Siangliw JL, Toojinda T, Chadchawan S, Theerakulpisut P (2018) High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: physiological and co-expression network analysis. Front Plant Sci 9:1135. https://doi.org/10.3389/fpls.2018.01135

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5(9):787–797

    Article  CAS  PubMed  Google Scholar 

  • Ondrasek G, Rathod S, Manohara KK, Gireesh C, Anantha MS, Sakhare AS, Parmar B, Yadav BK, Bandumula N, Raihan F, Zielińska-Chmielewska A (2022) Salt stress in plants and mitigation approaches. Plants 11(6):p717

    Article  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31(8–9):825–834

    Article  CAS  PubMed  Google Scholar 

  • Pepe M, Crescente MF, Varone L (2022) Effect of water stress on physiological and morphological leaf traits: A comparison among the three widely-spread invasive alien species Ailanthus altissima, Phytolacca americana and Robinia pseudoacacia. Plants 11:899.

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Qaim M (2016) Genetically modified crops and agricultural development. Springer, Palgrave Macmillan New York. https://doi.org/10.1057/9781137405722

    Book  Google Scholar 

  • Qaseem MF, Qureshi R, Shaheen H (2019) Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci Rep 9:6955. https://doi.org/10.1038/s41598-019-43477-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50(1):54–69

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Woo JH, Song Y, Lee SH, Hasan MM, Azad MAK, Lee KW (2022) Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass. Life 12(9):p1426

    Article  Google Scholar 

  • Reang L, Bhatt S, Tomar RS, Joshi K, Padhiyar S, Vyas UM, Kheni JK (2022) Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat. Sci Rep 12(1):4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protoc 2010(6). https://doi.org/10.1101/pdb.prot5439

  • Rudolph N, Labuschagne N, Aveling TAS (2015) The effect of plant growth promoting rhizobacteria on seed germination and seedling growth of maize. Seed Sci Technol 43(3):507–518. https://doi.org/10.15258/sst.2015.43.3.04

    Article  Google Scholar 

  • Saini A, Kumar A, Singh G, Giri SK (2023) Survival strategies and stress adaptations in Halophilic Archaebacteria. Microbial stress response: mechanisms and Data Science. American Chemical Society, pp 1–21

  • Sallam A, Alqudah AM, Dawood MF, Baenziger PS, Börner A (2019) Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J MolSci 20(13). https://doi.org/10.3390/ijms20133137

  • Sellappan R, Dhandapani S, Selvaraj A, Thangavel K (2021) Archaeal Symbiosis for Plant Health and Soil Fertility. In: Shrivastava, N., Mahajan, S., Varma, A. (eds) Symbiotic Soil Microorganisms. Soil Biology, Springer, Cham, vol 60, pp.221–228. https://doi.org/10.1007/978-3-030-51916-2_14

  • Shew AM, Nalley LL, Snell HA, Nayga RM Jr, Dixon BL (2018) CRISPR versus GMOs: public acceptance and valuation. Global food Security 19:71–80

    Article  Google Scholar 

  • Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS (2020) Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep 10(1):1–17. https://doi.org/10.1038/s41598-020-61140-w

    Article  CAS  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to stress ethylene produced in plants. Fron Microbiol 6:937

    Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413. https://doi.org/10.1016/0003-2697(88)90564-7

    Article  CAS  PubMed  Google Scholar 

  • Song GC, Im H, Jung J, Lee S, Jung MY, Rhee SK, Ryu CM (2019) Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ Microbiol 21(3):940–948

    Article  CAS  PubMed  Google Scholar 

  • Sood G, Kaushal R, Sharma M (2020) Alleviation of drought stress in maize (Zea mays L.) by using endogenous endophyte Bacillus subtilis in North West Himalayas. Acta Agric Scand Sect B Soil Plant Sci pp.1–10

  • Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34(8):2792–2804

    Article  Google Scholar 

  • Suman A, Govindasamy V, Ramakrishnan B, Aswini K, SaiPrasad J, Sharma P, Pathak D, Annapurna K (2022) Microbial community and function-based synthetic bioinoculants: a perspective for sustainable agriculture. Front Microbiol 12:p805498

    Article  Google Scholar 

  • Taffner J, Bergna A, Cernava T, Berg G (2020) Tomato-associated archaea show a cultivar-specific rhizosphere effect but an unspecific transmission by seeds. Phytobiomes J 4:133–141. https://doi.org/10.1094/PBIOMES-01-20-0017-R

    Article  Google Scholar 

  • Taffner J, Erlacher A, Bragina A, Berg C, Moissl-Eichinger C, Berg G (2018) What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. MSphere 3(3):00122–00118.

    Article  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117. https://doi.org/10.1016/j.plaphy.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Pandey GC (2022) Physiology of heat and drought tolerance in wheat: an overview. J Cereal Res 14(1):13–25. https://doi.org/10.25174/2582-2675/2022

    Article  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46(2):171–182. https://doi.org/10.1111/j.1365-313X.2006.02683.x

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Choudhary DK (2019) Regulation of drought-responsive gene expression in Glycine max L. Merrill is mediated through Pseudomonas simiae strain AU. J Plant Growth Regul 38(1):333–342

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation stategies. Indian J Agron 54(2):226–230

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasaya A, Manzoor S, Yasir TA, Sarwar N, Mubeen K, Ismail IA, Raza A, Rehman A, Hossain A, EL Sabagh (2021) Evaluation of fourteen bread wheat (Triticum aestivum L.) genotypes by observing gas exchange parameters, relative water and chlorophyll content, and yield attributes under drought stress. Sustainability 13(9):4799

    Article  CAS  Google Scholar 

  • Weatherley P (1950) Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol 49(1):81–97. https://doi.org/10.1111/j.1469-8137.1950.tb05146.x

    Article  Google Scholar 

  • White RH (1987) Indole-3-acetic acid and 2-(indol-3-ylmethyl) indol-3-yl acetic acid in the thermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol 169(12):5859–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicaksono WA, Egamberdieva D, Berg C, Mora M, Kusstatscher P (2022) Function-based rhizosphere assembly along a gradient of desiccation in the former aral sea. MSystems 7:1–16. https://doi.org/10.1128/msystems.00739-22

    Article  CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJ, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S (2006) Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences, 103(33), pp.12317–12322

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biol 74:1031–1043

    Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Saxena AK (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293. https://doi.org/10.1038/srep12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298

    Google Scholar 

  • Yang X, Wang B, Chen L, Li P, Cao C (2019) The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 9(1):1–12

    Google Scholar 

  • Zhou GA, Chang RZ, Qiu LJ (2010) Over expression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant MolBiol 72:357–369. https://doi.org/10.1007/s11103-009-9575-x

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A (2021) Integrative roles of phytohormones on cell proliferation, elongation and differentiation in the Arabidopsis thaliana primary root. Front Plant Sci 12:p659155

    Article  Google Scholar 

Download references

Acknowledgements

AKS, RK and DS acknowledge Indian Council of Agricultural Research (ICAR), New Delhi for the financial support through NASF project. HC acknowledges the support under the project “Deciphering molecular mechanism for eliciting drought tolerance in model plant by drought stress alleviating bacteria” funded by ICAR-NBAIM. The authors acknowledge the infrastructural facility provided by ICAR-NBAIM, Mau to conduct the experiments presented in the manuscript. Devendra Singh is also thankful to ICAR-CAZRI, Jodhpur for institutional support during research programme.

Funding

The authors are thankful to ICAR, New Delhi for providing financial support through NASF project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.K. Saxena and Rajeev Kaushik; Data curation: Devendra Singh, Hillol Chakdar; Formal analysis: Devendra Singh; Funding acquisition: A.K. Saxena, Rajeev Kaushik; Investigation: Devendra Singh, Hillol Chakdar; Methodology: Devendra Singh, Hillol Chakdar; Project administration: A.K. Saxena, Rajeev Kaushik; Resources: Hillol Chakdar; Software: Devendra Singh, Supervision: A.K. Saxena, Hillol Chakdar; Validation: A.K. Saxena, Hillol Chakdar; Visualization: A.K. Saxena, Hillol Chakdar, Roles/Writing - original draft: Devendra Singh; Writing - review & editing: A.K. Saxena, Hillol Chakdar,

Corresponding author

Correspondence to Anil Kumar Saxena.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1: Supplementary Table 1. Primers used for qPCR

11274_2023_3781_MOESM2_ESM.png

Supplementary Material 2: Supplementary Fig.1. Pot experiment for exploring the effect of haloarchaea (Halolamina pelagica CDK2) on morphological, physiological, biochemical and molecular traits of wheat under drought stress

11274_2023_3781_MOESM3_ESM.png

Supplementary Material 3: Supplementary Fig.2. Effect of haloarchaea (Halolamina pelagica CDK2) inoculation on wheat root architecture

Supplementary Material 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kaushik, R., Chakdar, H. et al. Unveiling novel insights into haloarchaea (Halolamina pelagica CDK2) for alleviation of drought stress in wheat. World J Microbiol Biotechnol 39, 328 (2023). https://doi.org/10.1007/s11274-023-03781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03781-3

Keywords

Navigation